Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new approach to unified performance analysis of randomly-spread CDMA systems over multipath fading channels via crosscorrelation matrix non-asymptotic average eigenvalue distributions
Date
2003-09-10
Author
Ertug, O
Baykal, Buyurman
Sayrac, B
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
A new unified method for closed-form theoretical performance analysis of randomly-spread CDMA systems over multipath fading channels with multiuser receivers is presented. The basis of the analysis is the representation of the random signal-to-interference ratios (SIR) at finite system parameters in terms of the eigenvalues of the crosscorrelation matrices for which the non-asymptotic average distributions are found or known. The methodology presented complements the asymptotic limiting theory used in similar previous works [1,2,3] over Gaussian/single-path fading channels, but at finite system parameters and over multipath fading channels. Though approach is non-asymptotic, it also validates asymptotically the predictions of the asymptotic limiting theory as the sizes of the system grow over all bounds. Application of the method is demonstrated by spectral efficiency derivations with linear multiuser
Subject Keywords
Spectral efficiency
URI
https://hdl.handle.net/11511/47969
DOI
https://doi.org/10.1109/pimrc.2003.1264335
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Methodology for performance analysis of randomly-spread CDMA systems over multipath fading channels via crosscorrelation matrix non-asymptotic average eigenvalue densities
Ertug, O; Baykal, Buyurman; Unal, BS (Institution of Engineering and Technology (IET), 2003-08-07)
A new methodology for closed-form theoretical performance analysis of randomly-spread CDMA systems over multipath fading channels with multiuser receivers is presented. The basis of the analysis is the representation of the random signal to interference ratios at finite system parameters in terms of the eigenvalues of crosscorrelation matrices for which the non-asymptotic average densities are found or known, The methodology presented complements the asymptotic Ruining theory used in similar previous work o...
High data rate X-band transmitter for low Earth orbit satellites
Sunay, Hacer K.; Ismailoglu, Neslin; Kirilmaz, Tunahan; Dudak, Celal; Sen, Ozlem A. (2007-04-26)
Main purpose of this study is to design a transmitter with data rates up to 100 Mbps, having QPSK/OQPSK modulation and 7 W (38.5 dBm) output power at 8.2 GHz. This output power satisfies the link budget for a low earth orbit (LEO) satellite at 700 km, utilizing required source-channel coding schemes in baseband for a BER performance of 10(-6). The modulation scheme of the transmitter can be selected as BPSK, QPSK or OQPSK. In addition to QPSK/OQPSK modulation scheme choice, the transmitter will have three d...
An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
Deniz, Fatih; Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (2016-07-01)
This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures...
A General framework on adaptive hybrid beamformingand channel acquisition for wideband mm-wave massive MIMO systems
Kurt, Anıl; Güvensen, Gökhan Muzzaffer.; Department of Electrical and Electronics Engineering (2019)
In this thesis, an efficient hybrid beamforming architecture together with a novel spatio-temporal receiver processing is proposed for single-carrier (SC) mm-wave wideband massive MIMO channels in time-domain duplex (TDD) mode. The design of two-stage beamformer is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sec...
A Framework for Energy based Performability models for Wireless Sensor Networks
Omondi, Fredrick A.; Shah, Purav; Gemikonakli, Orhan; Ever, Enver (2015-03-27)
A novel idea of alternating node operations between Active and Sleep modes in Wireless Sensor Network (WSN) has successfully been used to save node power consumption. The idea which started off as a simple implementation of a timer in most protocols has been improved over the years to dynamically change with traffic conditions and the nature of application area. Recently, use of a second low power radio transceiver to triggered Active/Sleep modes has also been made. Active/Sleep operation modes have also be...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ertug, B. Baykal, and B. Sayrac, “A new approach to unified performance analysis of randomly-spread CDMA systems over multipath fading channels via crosscorrelation matrix non-asymptotic average eigenvalue distributions,” 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47969.