Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Sequential Deposition of Electrochromic MoO3 Thin Films with High Coloration Efficiency and Stability
Date
2017-01-01
Author
Turel, Onur
Hacioglu, Serife O.
Coskun, Sahin
Toppare, Levent Kamil
Ünalan, Hüsnü Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Effect of thin film deposition route on the morphology and performance of molybdenum oxide (MoO3) based electrochromic devices was investigated. For the deposition of thin films, a sequential deposition method, which includes ultrasonic spray pyrolysis (USP) and thermal evaporation methods was used. Films deposited solely using either USP or thermal evaporation method were used as control samples. Following deposition, MoO3 thin films were then characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Surface characteristics and chemical structure of the deposited thin films were found to depend extensively on the deposition route. Electrochromic performance and reversibility of the samples were evaluated using ultraviolet-visible spectrophotometer and cyclic voltammetry. Sample prepared by USP method showed low coloration efficiency (16 cm(2) C-1), but high stability. In contrast, sample prepared by thermal evaporation had high coloration efficiency (30 cm(2) C-1), but low stability. Sample prepared by sequential deposition method showed the highest coloration efficiency (33 cm(2) C-1) among other samples and maintained its stability with cycling. The sequential deposition route investigated in this work is highly promising and might be extended to other metal oxide systems. (c) 2017 The Electrochemical Society.
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
Electrochemistry
,
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/48039
Journal
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
DOI
https://doi.org/10.1149/2.1201714jes
Collections
Department of Chemistry, Article