Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes

Tuncer, Sinem
Gurbanov, Rafig
Sheraj, Ilir
Solel, Ege
Esentürk, Okan
Banerjee, Sreeparna
Dimethyl sulfoxide (DMSO) is a small molecule with polar, aprotic and amphiphilic properties. It serves as a solvent for many polar and nonpolar molecules and continues to be one of the most used solvents (vehicle) in medical applications and scientific research. To better understand the cellular effects of DMSO within the concentration range commonly used as a vehicle (0.1-1.5%, v/v) for cellular treatments, we applied Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FT-IR) spectroscopy to DMSO treated and untreated epithelial colon cancer cells. Both unsupervised (Principal Component Analysis-PCA) and supervised (Linear Discriminant Analysis-LDA) pattern recognition/modelling algorithms applied to the IR data revealed total segregation and prominent differences between DMSO treated and untreated cells at whole, lipid and nucleic acid regions. Several of these data were supported by other independent techniques. Further IR data analyses of macromolecular profile indicated comprehensive alterations especially in proteins and nucleic acids. Protein secondary structure analysis showed predominance of beta-sheet over alpha-helix in DMSO treated cells. We also observed for the first time, a reduction in nucleic acid level upon DMSO treatment accompanied by the formation of Z-DNA. Molecular docking and binding free energy studies indicated a stabilization of Z-DNA in the presence of DMSO. This alternate DNA form may be related with the specific actions of DMSO on gene expression, differentiation, and epigenetic alterations. Using analytical tools combined with molecular and cellular biology techniques, our data indicate that even at very low concentrations, DMSO induces a number of changes in all macromolecules, which may affect experimental outcomes where DMSO is used as a solvent.


Temperature influence on the dipalmitoylphosphatidylcholyne - Model membranes studied by FTIR
Korkmaz, F.; Severcan, Feride; Aflori, M.; Dorohoi, D. O. (2008-06-01)
Lyotropic liquid crystals are realized from certain concentration of amphiphilic molecules, such as phospholipids, in water. The specific interactions in which water is involved are very important for model-membrane stability. Dipalmitoylphosphatidylcholyne (DPPC) model membranes have been studied by FTIR technique at different temperatures in the spectral range {2500 - 4000} cm(-1). A Gaussian deconvolution has been performed in order to study the water behaviour from the point of view of hydrogen-bond for...
Low temperature plasma as a means to transform nanoparticle atomic structure
Üner, Necip Berker; Thimsen, E. (2018-07-01)
Low temperature plasma (LTP) is a highly nonequilibrium substance capable of increasing the specific free energy of mass that flows through it. Despite this attractive feature, there are few examples of the transformation of solid material with an equilibrium atomic structure into a material with a nonequilibrium atomic structure. As a proposed example of such a transformation, in this work, it is argued that the transformation of crystalline metal nanoparticles into amorphous metal nanoparticles is feasibl...
Increasing clavulanic acid production both in wild type and industrial streptomyces clavuligerus strains by amplification of positive regulator claR gene
Mutlu, Alper; Özcengiz, Gülay; Department of Biology (2012)
Streptomyces clavuligerus is a Gram-positive, filamentous bacterium which produces several important secondary metabolites, including isopenicillin N, cephamycin C and the β-lactamase inhibitor clavulanic acid. Among these compounds, clavulanic acid is being used in combination with commonly used β-lactam antibiotics in order to fight against bacterial infections that are resistant to such antibiotics. Among these combinations, Augmentin, composed of amoxicillin and clavulanic acid, is the most widely presc...
Low temperature photocatalytic oxidation of carbon monoxide over palladium doped titania catalysts
Yetişemiyen, Pelin; Karakaş, Gürkan; Department of Chemical Engineering (2010)
The room temperature photocatalytic oxidation of carbon monoxide in excess air was examined over silica/titania and 0.1%palladium/silica/titania catalysts under UV irradiation. The experiments were conducted in batch re-circulated reactor with the initial 1000 ppm carbon monoxide in air and 0.5 g catalyst charge and the conversion of carbon monoxide to carbon dioxide was followed by FT-IR spectro-photometer. The change in gas composition in dark and under 36 Watts of UV irradiation exposed to a catalyst are...
Hydrogen gas production by combined systems of Rhodobacter sphaeroides OU001 and Halobacterium salinarum in a photobioreactor
Zabut, Baker; EI-Kahlout, Kamal; Yucel, Meral; Gündüz, Ufuk; Turker, Lemi; Eroglu, Inci (2006-09-01)
Rhodobacter sphaeroides O.U.001 is a photosynthetic non-sulfur bacterium which produces hydrogen from organic compounds under anaerobic conditions. Halobacterium salinarum is an archaeon and lives under extremely halophilic conditions (4 M NaCl). H. salinarum contains a retinal protein bacteriorhodopsin in its purple membrane which acts as a light-driven proton pump. In this study the Rhodobacter sphaeroides O.U.001 culture was combined with different amounts of packed cells of H. salinarum S9 or isolated p...
Citation Formats
S. Tuncer, R. Gurbanov, I. Sheraj, E. Solel, O. Esentürk, and S. Banerjee, “Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes,” SCIENTIFIC REPORTS, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48089.