Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bioelectricity Generation From Wastewater Sludge Using Microbial Fuel Cells: A Critical Review
Date
2016-09-01
Author
Ömeroğlu, Seçil
Sanin, Faika Dilek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
296
views
0
downloads
Cite This
Today, the majority of the world's energy is provided by fossil fuels. Natural energy resources soon will be consumed as a result of rising energy needs of the growing population, leading to a global energy crisis. The insecurity in the energy market also affects the global economy negatively and forces the governments to investigate renewable energy alternatives such as bioenergy. Bioenergy technologies can reduce greenhouse gas (GHG) emissions significantly and can serve to satisfy many forms of energy demand. Microbial fuel cells (MFCs) are one of the bioenergy technologies converting the chemical energy in the bonds of organic wastes into electricity through the biocatalytic reactions of microorganisms. Since the microorganisms present in MFCs utilize organic matter while producing electricity, the use of wastewater and sewage sludge as substrate (fuel) makes MFCs not only a renewable energy technology but also a treatment alternative. Especially, considering the energy consumption of conventional wastewater and sludge treatment systems, MFCs offer a sustainable solution that supply the energy required while achieving high levels of treatment. In addition to these, MFCs can be used in sensors, biohydrogen production and bioremediation. However, the technologic and economic problems with MFCs limit their large scale applications. The purpose of this study is to analyze the recent studies on MFCs and evaluate the outstanding operational parameters and investigate the energy production and efficiency in MFCs fed with different types of wastewater sludge.
Subject Keywords
Pollution
,
Water Science and Technology
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/48363
Journal
CLEAN-SOIL AIR WATER
DOI
https://doi.org/10.1002/clen.201500829
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Screening and In Situ Monitoring of Potential Petroleum Hydrocarbon Degraders in Contaminated Surface Water
İçgen, Bülent (Wiley, 2017-01-01)
Incomplete combustion of fossil fuels and other anthropogenic activities result in contamination of surface water by petroleum hydrocarbons. These pollutants can have severe effects on aquatic life and human health. In petroleum bioremediation, oil degrading microorganisms are utilized to remove petroleum hydrocarbons from polluted water. However, monitoring and identifying microorganisms capable of degrading petroleum hydrocarbons is very challenging. In the current study, bacteria isolated from a river al...
Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste
Dogan, Eylem; Demirer, Göksel Niyazi (2012-11-01)
The organic fraction of municipal solid waste can be a significant energy source for renewable energy generation. The total production of municipal solid waste in Turkey was 25 x 10(6) tones per year. Anaerobic digestion (AD) process may be a solution to the problems of energy demand and waste management since it provides biomethanation along with waste stabilization. AD can be operated in single or two phase configurations. Two-phase processes have some advantages over one phase systems in terms of selecti...
Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review
Ali, Muhammad Ubaid; Siyi, Lin; Yousaf, Balal; Abbas, Qumber; Hameed, Rashida; Zheng, Chunmiao; Kuang, Xingxing; Wong, Ming Hung (Informa UK Limited, 2020-03-19)
With increased urbanization and industrialization, the global burden of anthropogenic emissions through biomass and fossil fuel combustion has increased significantly, threatening the global climate system, air quality and human health. Half of the aerosol particles emitted as a result of combustion are in the form of black carbon (BC), co-emitted with polycyclic aromatic hydrocarbons (PAHs). Due to strong sorption efficiency, BC act as a carrier for highly toxic and carcinogenic PAHs in air, water and soil...
Assessing the effects of wind farms on soil organic carbon.
Pekkan, Ozge Isik; Şenyel Kürkçüoğlu, Müzeyyen Anıl; Cabuk, Saye Nihan; Aksoy, Talha; Yilmazel, Burcu; Kucukpehlivan, Tuncay; Dabanli, Ahmet; Cabuk, Alper; Cetin, Mehmet (Springer Science and Business Media LLC, 2021-01-06)
Wind energy is considered one of the cleanest and most sustainable resources among renewable energy sources. However, several negative environmental impacts can be observed, unless suitable sites are selected for the establishment of wind farms. The aim of this study is to determine the change in the soil organic carbon (SOC) stock resulting from land cover changes that were caused by wind farm establishments in the Karaburun peninsula. Within the scope of the study, remote sensing and geographic informatio...
Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production
Alanya, S.; Yılmazel Tokel, Yasemin Dilşad; Park, C.; Willis, J. L.; Keaney, J.; Kohl, P. M.; Hunt, J. A.; Duran, M. (IWA Publishing, 2013-01-01)
The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L.d) (COD: chemical oxygen dem...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ömeroğlu and F. D. Sanin, “Bioelectricity Generation From Wastewater Sludge Using Microbial Fuel Cells: A Critical Review,”
CLEAN-SOIL AIR WATER
, pp. 1225–1233, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48363.