Initial value problem solution of nonlinear shallow water-wave equations

2006-10-06
The initial value problem solution of the nonlinear shallow water-wave equations is developed under initial waveforms with and without velocity. We present a solution method based on a hodograph-type transformation to reduce the nonlinear shallow water-wave equations into a second-order linear partial differential equation and we solve its initial value problem. The proposed solution method overcomes earlier limitation of small waveheights when the initial velocity is nonzero, and the definition of the initial conditions in the physical and transform spaces is consistent. Our solution not only allows for evaluation of differences in predictions when specifying an exact initial velocity based on nonlinear theory and its linear approximation, which has been controversial in geophysical practice, but also helps clarify the differences in runup observed during the 2004 and 2005 Sumatran tsunamigenic earthquakes.
PHYSICAL REVIEW LETTERS

Suggestions

New Analytical Solution for Nonlinear Shallow Water-Wave Equations
AYDIN, BARAN; Kanoğlu, Utku (2017-08-01)
We solve the nonlinear shallow water-wave equations over a linearly sloping beach as an initial-boundary value problem under general initial conditions, i.e., an initial wave profile with and without initial velocity. The methodology presented here is extremely simple and allows a solution in terms of eigenfunction expansion, avoiding integral transform techniques, which sometimes result in singular integrals. We estimate parameters, such as the temporal variations of the shoreline position and the depth-av...
Exact solution of Schrodinger equation for Pseudoharmonic potential
Sever, Ramazan; TEZCAN, CEVDET; Aktas, Metin; Yesiltas, Oezlem (2008-02-01)
Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n <= 5 for some diatomic molecules.
Effective-mass Klein-Gordon-Yukawa problem for bound and scattering states
Arda, Altug; Sever, Ramazan (2011-09-01)
Bound and scattering state solutions of the effective-mass Klein-Gordon equation are obtained for the Yukawa potential with any angular momentum l. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated as well as for the constant mass case. Bound state solutions of the Coulomb potential are also studied as a limiting case. Analytical and numerical results are compared with the ones obtained before. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641246]
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Bound state solution of the Schrodinger equation for Mie potential
Sever, Ramazan; Bucurgat, Mahmut; TEZCAN, CEVDET; Yesiltas, Oezlem (Springer Science and Business Media LLC, 2008-02-01)
Exact solution of Schrodinger equation for the Mie potential is obtained for an arbitrary angular momentum. The energy eigenvalues and the corresponding wavefunctions are calculated by the use of the Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The bound states are calculated numerically for some values of l and n with n <= 5. They are applied to several diatomic molecules.
Citation Formats
U. Kanoğlu, “Initial value problem solution of nonlinear shallow water-wave equations,” PHYSICAL REVIEW LETTERS, pp. 0–0, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48421.