Micro-sphere based viscoplastic constitutive model for uncured green rubber

Dal, Hüsnü
Kaliske, Michael
Uncured rubber exhibits strong viscoplastic flow without a distinct yield point accompanied by hardening. Classical hyperelastic models developed for crosslinked rubber do not apply to uncured rubber due to the lack of crosslinks which endow the material its elasticity. This paper presents a new constitutive model for the isothermal response of uncured green rubber. The kinematic structure of the proposed approach is based on the affine micro-sphere model. The computation of the stretch in the orientation direction follows the Cauchy-Born rule. The micro-sphere enables numerical integration over the unit sphere via finite summation over the orientation directions corresponding to the integration points over the sphere. This structure replaces the complex three-dimensional formulations of finite inelasticity based on the multiplicative split of the deformation gradient by a simpler and more attractive one-dimensional rheological representation at the orientation directions. The rheology of the model consists of two parts: (i) a part responsible for the rate-independent reponse and (ii) a part responsible for the rate-dependent response, respectively. The first branch consists of a spring connected to a modified Kelvin element, where the latter spring models the kinematic hardening. The dashpot describes a time-independent endochronic flow rule based solely on the deformation history. The second branch consists of a spring connected to a Maxwell element in parallel to a dashpot. The two dashpots in the latter branch model the ground-state viscoelasticity and rate-dependent hardening phenomenon. Albeit its apparent complexity, the proposed rheology and its numerical implementation are straightforward. The proposed model shows favorable results suitable for large scale finite element based simulations for forming process of uncured rubber components.


Compression of solid and annular circular discs bonded to rigid surfaces
Pinarbasi, Seval; Mengi, Yalcin; Akyüz, Uğurhan (Elsevier BV, 2008-08-01)
Although it is noted in the literature that the presence of a central hole in an elastic layer bonded to rigid surfaces can cause significant drop in its compression modulus not much, attention is given for investigating thoroughly and in detail the influence of the hole oil the layer behavior. This paper presents analytical solutions to the problem ofthe uniform compression of bonded hollow circular elastic layers, which includes solid circular layers as a special case as the radius of hollow section vanis...
Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining
Gigax, Jonathan G.; El-Atwani, Osman; McCulloch, Quinn; Aytuna, Berk; Efe, Mert; Fensin, Saryu; Maloy, Stuart A.; Li, Nan (Elsevier BV, 2020-03-01)
Large strain machining (LSM), an attractive severe deformation technique due to its simplicity, has been previously used to produce a fine-grained structure in a variety of alloys. An equiatomic CrFeMnNi high entropy alloy was subject to various LSM conditions. The microstructure was observed to have ultra-fine grains in all conditions, with some more homogeneous than others. Nanoindentation showed a considerable increase in hardness for all LSM conditions with respect to the base material. Mesoscale tensil...
Efficient fabrication of ultrafine-grained 316L stainless steel surfaces for orthopaedic applications
Tufan, Yiğithan; Efe, Mert; Ercan, Batur (Informa UK Limited, 2019-10-13)
Commonly used severe plastic deformation (SPD) methods are suitable for fabrication of bulk nano and ultrafine-grained metals. Drawbacks of these methods include durability of dies, geometrical restrictions and reduced ductility of the products. In this study, two common machining techniques used in manufacturing of orthopaedic components, turning and milling, were applied on 316L stainless steel as surface SPD to refine the surface microstructures of the workpiece. Machining with optimised parameters resul...
Elastic layers bonded to flexible reinforcements
Pinarbasi, Seval; Mengi, Yalcin (Elsevier BV, 2008-02-01)
Elastic layers bonded to reinforcing sheets are widely used in many engineering applications. While in most of the earlier applications, these layers are reinforced using steel plates, recent studies propose to replace "rigid" steel reinforcement with "flexible" fiber reinforcement to reduce both the cost and weight of the units/systems. In this study, a new formulation is presented for the analysis of elastic layers bonded to flexible reinforcements under (i) uniform compression, (ii) pure bending and (iii...
Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space
Miehe, Christian; Göktepe, Serdar; Mendez Diez, Joel (Elsevier BV, 2009-01-01)
The paper outlines a new constitutive model and experimental results of rate-dependent finite elastic-plastic behavior of amorphous glassy polymers. In contrast to existing kine-matical approaches to finite viscoplasticity of glassy polymers, the formulation proposed is constructed in the logarithmic strain space and related to a six-dimensional plastic metric. Therefore, it a priori avoids difficulties concerning with the uniqueness of a plastic rotation. The constitutive framework consists of three major ...
Citation Formats
H. Dal and M. Kaliske, “Micro-sphere based viscoplastic constitutive model for uncured green rubber,” INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, pp. 201–217, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48583.