Immobilization of glucose oxidase onto gelatin for biosensor construction

Emregul, E
Sungur, S
Akbulut, Ural
The properties of a glucose biosensor made by immobilization of glucose oxidase onto gelatin in a layer of electrochemically deposited polyaniline have been investigated. Glucose oxidase was immobilized within gelatin cross-links with chromium(III) acetate. The glucose oxidase biosensor was developed by forming a polyaniline-deposited electrode surface as support for the immobilized enzyme gel, in order to increase its durability. The polyaniline/gelatin/glucose oxidase biosensor has been characterized using chemical and electrochemical methods. Temperature, pH, cross-linking agent concentration, enzyme concentration, kinetic properties, reusability and the effect of electro-active compounds were among the parameters studied. The response time of the glucose oxidase biosensor is 90 s, the detection limit is below 1 mmol/dm(3) and the sensor can be used 20 times within a 2-month period without losing its stability.


Immobilization of glucose oxidase in poly(2-hydroxyethyl methacrylate) membranes
Arica, Y.; Hasirci, V.N.; Arica, Yakup (Elsevier BV, 1987-11)
Glucose oxidase (GOD) was immobilized in a poly(2-hydroxyethyl methacrylate) (HEMA) membrane through matrix entrapment in order to investigate the effect of various parameters (e.g. concentration of ingredients, temperature, repeated interaction with glucose and shelf storage) on the activity of the enzyme. Permeability of the membrane to a model permeant was tested and SEMs were obtained. It was observed that upon immobilization the affinity of GOD towards glucose was substantially decreased, and increasin...
Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability
Bayramoglu, Guelay; Kiralp, Senem; Yilmaz, Meltem; Toppare, Levent Kamil; Arica, M. Yakup (Elsevier BV, 2008-02-15)
Amino groups containing magnetic beads were used in covalent immobilization of the enzyme "chloroperoxidase (CPO)" which is one of a few enzymes that can catalyse the peroxide dependent oxidation of a wide spectrum of organic and inorganic compounds. The magnetic poly(glycidylmethacrylate-methylmethacrylate-etbyleneglycol dimethacrylate), magnetic p(GMA-MMA-EGDMA) beads were prepared via suspension polymerization in the presence of ferric ions. The magnetic beads were characterized with scanning electron mi...
Biodegradable polymer promotes osteogenic differentiation in immortalized and primary osteoblast-like cells
Onat, Bora; Tuncer, Sinem; Ulusan, Sinem; Banerjee, Sreeparna; Erel Göktepe, İrem (IOP Publishing, 2019-07-01)
Biodegradable polymers have been broadly used as agents that can complex with and deliver osteoinductive agents, but osteoinductivity of the polymers themselves has been rarely studied. Here we report the osteoinductivity of poly(4-hydroxy-L-proline ester) (PHPE), a biodegradable cationic polymer with cell penetrating properties. Under physiological conditions, PHPE degrades into trans-4-hydroxy-L-prohne (trans-Hyp), a non-coded amino acid with essential functions in collagen fibril formation and fibril sta...
Immobilization of yeast cells in acrylamide gel matrix
Hasirci, V.N.; Alaeddinoglu, G.; Aykut, Gül (Elsevier BV, 1988-3)
Entrapment of yeast cells in a three-dimensional polymer matrix was achieved, and various properties of the polymer matrix as well as the invertase activity of the yeast cells were studied. When the matrix was highly cross-linked or synthesized from concentrated polymer solutions, its swelling ratio decreased. Invertase activity was found to increase with water content of the matrix. Cell content of the gel was found to affect adversely enzyme activity. The enzyme was found to retain its activity after seve...
Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase
Çalık, Pınar (Elsevier BV, 2001-07-01)
The metabolic fluxes through the central carbon pathways were calculated for the genus Bacillus separately for the enzymes serine alkaline protease (SAP), neutral protease (NP) and alpha -amylase (AMY) on five carbon sources that have different reduction degrees (gamma), to determine the theoretical ultimate limits of the production capacities of Bacillus species and to predict the selective substrate for the media design. Glucose (gamma = 4.0), acetate (gamma = 4.0), and the TCA cycle organic-acids succina...
Citation Formats
E. Emregul, S. Sungur, and U. Akbulut, “Immobilization of glucose oxidase onto gelatin for biosensor construction,” JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, pp. 505–519, 2005, Accessed: 00, 2020. [Online]. Available: