Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Immobilization of glucose oxidase onto gelatin for biosensor construction
Date
2005-01-01
Author
Emregul, E
Sungur, S
Akbulut, Ural
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
The properties of a glucose biosensor made by immobilization of glucose oxidase onto gelatin in a layer of electrochemically deposited polyaniline have been investigated. Glucose oxidase was immobilized within gelatin cross-links with chromium(III) acetate. The glucose oxidase biosensor was developed by forming a polyaniline-deposited electrode surface as support for the immobilized enzyme gel, in order to increase its durability. The polyaniline/gelatin/glucose oxidase biosensor has been characterized using chemical and electrochemical methods. Temperature, pH, cross-linking agent concentration, enzyme concentration, kinetic properties, reusability and the effect of electro-active compounds were among the parameters studied. The response time of the glucose oxidase biosensor is 90 s, the detection limit is below 1 mmol/dm(3) and the sensor can be used 20 times within a 2-month period without losing its stability.
Subject Keywords
Biophysics
,
Bioengineering
,
Biomaterials
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/48640
Journal
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
DOI
https://doi.org/10.1163/1568562053700138
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Immobilization of glucose oxidase in poly(2-hydroxyethyl methacrylate) membranes
Arica, Y.; Hasirci, V.N.; Arica, Yakup (Elsevier BV, 1987-11)
Glucose oxidase (GOD) was immobilized in a poly(2-hydroxyethyl methacrylate) (HEMA) membrane through matrix entrapment in order to investigate the effect of various parameters (e.g. concentration of ingredients, temperature, repeated interaction with glucose and shelf storage) on the activity of the enzyme. Permeability of the membrane to a model permeant was tested and SEMs were obtained. It was observed that upon immobilization the affinity of GOD towards glucose was substantially decreased, and increasin...
POLYESTER FILM STRIPS COATED WITH PHOTOGRAPHIC GELATIN CONTAINING IMMOBILIZED GLUCOSE-OXIDASE HARDENED BY CHROMIUM(III) SULFATE
ELCIN, YM; Akbulut, Ural (Elsevier BV, 1992-01-01)
Glucose oxidase was immobilized into photographic gelatin hardened by chromium(III) sulphate. The enzyme-gelatin mixture was coated on polyester film strips which allowed easy and simple handling during assays. The effect of gelatin and cross-linker concentrations on water content and enzymatic activity was studied. The effect of pH during immobilization and that of incubation temperature on maximum activity were examined- Enzyme leakage tests were carried out during reuse number studies. Consecutive use of...
Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability
Bayramoglu, Guelay; Kiralp, Senem; Yilmaz, Meltem; Toppare, Levent Kamil; Arica, M. Yakup (Elsevier BV, 2008-02-15)
Amino groups containing magnetic beads were used in covalent immobilization of the enzyme "chloroperoxidase (CPO)" which is one of a few enzymes that can catalyse the peroxide dependent oxidation of a wide spectrum of organic and inorganic compounds. The magnetic poly(glycidylmethacrylate-methylmethacrylate-etbyleneglycol dimethacrylate), magnetic p(GMA-MMA-EGDMA) beads were prepared via suspension polymerization in the presence of ferric ions. The magnetic beads were characterized with scanning electron mi...
In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone-bioglass composites
ERDEMLİ, ÖZGE; Captug, O.; Bilgili, H.; ORHAN, DİCLEHAN; Tezcaner, Ayşen; Keskin, Dilek (Springer Science and Business Media LLC, 2010-01-01)
The objective of this study was to improve the efficacy of polycaprolactone/bioglass (PCL/BG) bone substitute using demineralized bone matrix (DBM) or calcium sulfate (CS) as a third component. Composite discs involving either DBM or CS were prepared by compression moulding. Bioactivity of discs was evaluated by energy dispersive X-ray spectroscopy (ESCA) and scanning electron microscopy (SEM) following simulated body fluid incubation. The closest Calcium/Phosphate ratio to that of hydroxyl carbonate apatit...
Biodegradable polymer promotes osteogenic differentiation in immortalized and primary osteoblast-like cells
Onat, Bora; Tuncer, Sinem; Ulusan, Sinem; Banerjee, Sreeparna; Erel Göktepe, İrem (IOP Publishing, 2019-07-01)
Biodegradable polymers have been broadly used as agents that can complex with and deliver osteoinductive agents, but osteoinductivity of the polymers themselves has been rarely studied. Here we report the osteoinductivity of poly(4-hydroxy-L-proline ester) (PHPE), a biodegradable cationic polymer with cell penetrating properties. Under physiological conditions, PHPE degrades into trans-4-hydroxy-L-prohne (trans-Hyp), a non-coded amino acid with essential functions in collagen fibril formation and fibril sta...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Emregul, S. Sungur, and U. Akbulut, “Immobilization of glucose oxidase onto gelatin for biosensor construction,”
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
, pp. 505–519, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48640.