Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Bending of graded curved bars at elastic limits and beyond
Date
2013-03-01
Author
ARSLAN, ERAY
Eraslan, Ahmet Nedim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
12
views
0
downloads
Analytical and computational models are developed to predict the stress response of functionally graded curved bars under pure bending in elastic and partially plastic states of stress. In the analytical model, the modulus of elasticity and in the computational model, both the modulus of elasticity and the hardening parameter of the bar material are assumed to vary in the radial direction. The analytical model is based on Tresca's yield criterion, its associated flow rule and ideal plastic material behavior, while the computational one is based on von Mises' yield criterion, total deformation theory and a Swift type nonlinear hardening law. The models are verified not only in comparison to the published solutions, but also in comparison to each other. The results indicate that the variation of material properties, especially the variation of modulus of elasticity, strongly affects the deformation behavior of the bar. In a graded bar, yielding may commence at the inner, at the outer or simultaneously at both surfaces despite the fact that yielding initiates at the inner surface in a homogeneous bar. Crown Copyright (c) 2012 Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Curved bar
,
Elastoplasticity
,
Tresca's criterion
,
Von Mises' criterion
,
Shooting method
URI
https://hdl.handle.net/11511/48976
Journal
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
DOI
https://doi.org/10.1016/j.ijsolstr.2012.11.016
Collections
Department of Engineering Sciences, Article