Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ELASTIC-PLASTIC STRESS ANALYSIS OF NONHOMOGENEOUS ROTATING SOLID DISCS
Date
2008-09-01
Author
Eraslan, Ahmet Nedim
Gulgec, Mufit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
A computational model is developed for the analysis of elastic and partially plastic stress states in functionally graded (FGM) variable thickness rotating solid disks. The modulus of elasticity, Poisson's ratio, uniaxial yield limit and density of the disk material are assumed to vary radially in any prescribed functional forms. Small deformations and a state of plane stress are presumed. Using the von Mises yield criterion, total deformation theory and a Swift-type nonlinear hardening law, a single nonlinear equation describing elastoplastic behavior of rotating disk is obtained. A shooting technique using Newton iterations with numerically approximated tangents is designed and used for the computer solution of the governing equation. The model is verified by comparing predictions with analytical solutions.
Subject Keywords
Functionally graded material
,
Rotating disk
,
Von mises criterion
,
Nonlinear hardening
,
Shooting method
URI
https://hdl.handle.net/11511/52847
Journal
JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Analytical and Numerical Solutions to a Rotating FGM Disk
Eraslan, Ahmet Nedim (2015-10-01)
Analytical and numerical solutions to a rotating uniform thickness functionally graded (FGM) disk are obtained. Solid and annular disk geometries are taken into consideration. The modulus of elasticity of the disk material is assumed to vary in the radial direction. A new one-parameter exponential model is used to express the variation of the modulus of elasticity. The results of the solutions are presented in tables and figures. Those presented in tables may form benchmark data for purely numerical calcula...
Bending of graded curved bars at elastic limits and beyond
ARSLAN, ERAY; Eraslan, Ahmet Nedim (2013-03-01)
Analytical and computational models are developed to predict the stress response of functionally graded curved bars under pure bending in elastic and partially plastic states of stress. In the analytical model, the modulus of elasticity and in the computational model, both the modulus of elasticity and the hardening parameter of the bar material are assumed to vary in the radial direction. The analytical model is based on Tresca's yield criterion, its associated flow rule and ideal plastic material behavior...
Nonlinear Vibrations of a Functionally Graded Material Microbeam with Geometric Nonlinearity
Uz, Canan; Ciğeroğlu, Ender (2017-02-02)
In this paper, nonlinear vibration analysis of micro scale functionally graded material (FGM) beams with geometric nonlinearity due to large deflection is studied using modified couple stress theory (MCST). MCST is a nonlocal elasticity theory which includes a material length scale parameter since the size of an atomic microstructure becomes comparable to the length of the microbeam. Equations of motion of the micro scale FGM beam are obtained by using Hamilton's principle. Nonlinear free vibrations of the ...
Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness
Eraslan, Ahmet Nedim (2002-07-01)
The elastic-plastic deformation of a rotating solid disk of variable thickness in exponential form is investigated using Tresca's yield criterion, its associated flow rule and linear strain hardening. An analytical solution is obtained and numerical results are presented for different values of the geometric parameters. In the limiting case of uniform thickness the solution reduces to Garner's solution.
Computer Solutions of Plane Strain Axisymmetric Thermomechanical Problems
Eraslan, Ahmet Nedim (2005-08-01)
A simple computational model is developed to estimate elastic, elastic-plastic, fully plastic, and residual stress states in generalized plane strain axisymmetric structures considering temperature dependent physical properties as well as nonlinear isotropic strain hardening. Using the von Mises yield criterion, total deformation theory and a Swift-type nonlinear hardening law, a single nonlinear differential equation governing thermoelastoplastic behavior is obtained. A shooting technique using Newton iter...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. N. Eraslan and M. Gulgec, “ELASTIC-PLASTIC STRESS ANALYSIS OF NONHOMOGENEOUS ROTATING SOLID DISCS,”
JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY
, pp. 627–635, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52847.