Liquid crystal alignment on the patterns produced by nonlinear laser lithography

2019-06-01
Pavlov, Ihor
Dobrovolskiy, Andriy
Kazantseva, Zoya
Bek, Alpan
Gvozdovskyy, Igor
Liquid crystal (LC) based devices such as displays, spatial light modulators (SLM) and different switchable phase masks constitute the main part of the graphic information display and light control. Mechanical rubbing and photo-alignment are the most widely used industrial technologies to create anisotropic surfaces for these devices. Recently, nonlinear laser lithography (NLL) was introduced as a fast, cost effective method for large area nano-grating fabrication based on laser-induced periodic surface structuring [1]. Here we report on alignment of nematic LC on NLL treated Ti film deposited on glass for the first time. We demonstrate controllable changes of azimuthal anchoring energy (AAE) depending on processing and additional coating parameters. To create the large area of structured Ti layers we used the experimental scheme of the NLL method, as described in [2]. The setup consists of a home-made femtosecond fiber laser system (up to 1.8 μJ pulse energy at 1 MHz repetition rate), galvanometer-scanner and motorized 3D-translation stage. The samples were 300 nm Ti films deposited on glass. 5×5 mm 2 zones were structured by raster scanning of the laser beam over the surface with different parameters. To measure the twist angle and further calculate the AAE we have made combined twist LC cells. LC cells consisted of the tested and reference substrates where the last one was a glass substrate coated with a polyimide PI2555 and processed by the rubbing technique. The first type of the tested substrate was coated with Ti layer and further processed by the NLL method. The second type of the tested substrate was additionally coated with ODAPI. The twist angle was measured by using the combined twist LC cell method. Later, the AAE was calculated from the obtained twist angles of different samples. Fig. 1 (a-c) demonstrates dependencies of the measured twist angles and calculated AAE for different samples. We obtain controllable changes of the anchoring energy in the range between 2×10 -6 J/m 2 to 10 -4 J/m 2 . The highest AAE 10 -4 J/m 2 is obtained for the samples which are processed by NLL with post-coating by ODAPI.

Suggestions

Pumping chamber design in diode pumped solid-state lasers for maximum system efficiency and minimum optical distortion
Zengin, Kubilay; Sayan, Gönül; Yelen, Kuthan; Department of Electrical and Electronics Engineering (2013)
The beam quality and the system efficiency of a diode-pumped solid-state laser source are directly related to the thermal profile inside the laser crystal. The thermal profile in a laser crystal should be made uniform in order to reduce the negative effects of the thermal lens. However, the absorbed pump profile that forms a uniform thermal profile inside the gain medium may adversely affect the system efficiency. In this thesis, a computational and empirical method was developed for designing pumping chamb...
Real-time scanning hall probe microscopy
Oral, Ahmet; HENİNİ, M (1996-08-26)
We describe a low-noise scanning Hall probe microscope having unprecedented magnetic field sensitivity (similar to 2.9x10(-8) T/root Hz at 77 K), high spatial resolution, (similar to 0.85 mu m),nd operating in real-time (similar to 1 frame/s) for studying flux profiles at surfaces. A submicron Hall probe manufactured in a GaAs/A1GaAs two-dimensional electron gas (2DEG) is scanned over the sample to measure the surface magnetic fields using conventional scanning tunneling microscopy positioning techniques. F...
An Automated calibration set up for laser beam positioning systems in visual inspection applications
Kiraz, Ercan; Dölen, Melik; Department of Mechanical Engineering (2013)
In this study, a calibration setup for laser beam positioning systems used in visual inspection applications in industry is designed and manufactured. The laser positioning systems generate movable parallel laser lines on the projection surface. There are several translational and angular error sources affecting the positioning accuracy of the laser lines on the projection surface. Especially, since the laser line positioning error caused by angular error sources increases with the distance between the lase...
Wavefront shaping assisted design and application of effective diffractive optical elements providing spectral splitting and solar concentration: splicons
Gün, Berk Nezir; Yüce, Emre; Department of Physics (2020-9)
The diffractive optical elements that mainly concentrate light are primarily designed via numerical methods. These methods incur increased computational time as well as a lack of real-life conditions. Our experimental approach offers a new design method for SpliCon, a particular type of diffractive optical element that can spectrally split and concentrate broadband light (420 nm - 875 nm). We managed to form a programmable SpliCon by wavefront shaping via a phase-only spatial light modulator.The method we...
Electrical impedance tomography using the magnetic field generated by injected currents
Birgul, O; Ider, YZ (1996-11-03)
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savar...
Citation Formats
I. Pavlov, A. Dobrovolskiy, Z. Kazantseva, A. Bek, and I. Gvozdovskyy, “Liquid crystal alignment on the patterns produced by nonlinear laser lithography,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49206.