Fueling Plankton Production by a Meandering Frontal Jet: A Case Study for the Alboran Sea (Western Mediterranean)

Oguz, Temel
Macias, Diego
Garcia-Lafuente, Jesus
Pascual, Ananda
Tintore, Joaquin
A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15–20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive.


Modulation of frontogenetic plankton production along a meandering jet by zonal wind forcing: An application to the Alboran Sea
Oguz, Temel; Mourre, Baptiste; Tintore, Joaquin (2017-08-01)
We present a coupled physical-biological modeling study to elucidate the changes in ageostrophic frontal dynamics and the frontogenetic plankton production characteristics of a meandering jet under the impacts of successive westerly/easterly wind events combined with seasonal variations in the upstream transport and buoyancy flux characteristics of the jet, using a case study for the Alboran Sea (Western Mediterranean). Their nonlinear coupling is shown to result in different forms of physical and biologica...
Coupled physical and biochemical data driven simulations of Black Sea in spring-summer: real-time forecast and data assimilation
Besiktepe, ST (2002-12-06)
Data driven simulations in the Black Sea based upon observations during May-June 2001 in the SW part of the basin and coupled 3D physical and biochemical models have been carried out. The model was initialised with the data obtained during 22-28 May, 2001 and ran until 15 June, 2001. The data obtained in the second leg during 12-18 June, 2001 was assimilated into the model. At the time of the assimilation, the model forecast and the data were also compared. Quantitative and qualitative comparisons of the co...
Aeroelastic Analysis of a Flapping Blow Fly Wing
Beker, Can; Turgut, Ali Emre; ARIKAN, KUTLUK BİLGE; Kurtuluş, Dilek Funda (2020-06-01)
In this study, a 3D model of the bio-inspired blowfly wing Callphere Erytrocephala is created and aeroelastic analysis is performed to calculate its aerodynamical characteristics by use of numerical methods. To perform the flapping motion, a sinusoidal input function is created. The scope of this study is to perform aeroelastic analysis by synchronizing computational fluid dynamics (CFD) and structural dynamic analysis models and to investigate the unsteady lift formation on the aeroelastic flapping wing fo...
ILTER, M; OZILGEN, M; ORBEY, N (Wiley, 1991-01-01)
Permeation of individual gases through a low density polyethylene package film with CO2-N2 and CO2-O2-N2 mixtures was simulated with a simple mathematical model. Permeabilities of carbon dioxide were of the order of 10(-12) m3/s m2atm/m with CO2-N2 systems. Including oxygen in the system did not change carbon dioxide permeabilities. Permeabilities of oxygen were of the order of magnitude of 10(-9) m3/s m2atm/m with this system. When a CO2-O2-N2 mixture was humidified no substantial change was observed i...
Aeroservoelastic Modelling and Analysis of a Missile Control Surface with a Nonlinear Electromechanical Actuator
Mehmet Ozan, Nalcı; Kayran, Altan (null; 2014-06-16)
In this study, aeroservoelastic modeling and analysis of a missile control surface which is operated and controlled by a power limited, nonlinear electromechanical actuator is performed. Linear models of the control fin structure and aerodynamics together with the nonlinear servo-actuation system are built and integrated. The resulting aeroservoelastic system is analyzed both in time and frequency domain. Structural model of the control fin is based on the finite element model of the fin. Aerodynamic model ...
Citation Formats
T. Oguz, D. Macias, J. Garcia-Lafuente, A. Pascual, and J. Tintore, “Fueling Plankton Production by a Meandering Frontal Jet: A Case Study for the Alboran Sea (Western Mediterranean),” PLoS ONE, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51276.