Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Predicting Mathematics 1 Course Success by Using Hierarchical Adaptive Network Based Fuzzy Inference System
Download
PAJES_20_5_166_173.pdf
Date
2014
Author
Dulger, Ozcan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
2
downloads
Öğrencilerin Matematik 1 dersinden alacağı notları önceden tahmin etmek dönem öncesi öğrencileri Matematik 1 dersine hazırlamak için oldukça önemlidir. Verilerin doğrusal olmayan yapılarından dolayı çözüm elde etme zor olmaktadır. Sayısal değerler içeren bu tür problemler için çözüm sunan bulanık mantık yöntemi tercih edilen yöntemlerden bir tanesidir. Bulanık mantıkla çözüm elde etmek için üyelik fonksiyonlarını ve onların parametre değerlerini doğru belirlemek gereklidir. Bu işlem bir uzman tarafından yapılabildiği gibi bir veri kümesi kullanılaraktan da yapılabilmektedir. Bu çalışmada, Pamukkale Üniversitesi Mühendislik Fakültesi’ne 2007-2008 EğitimÖğretim yılında kayıt yaptıran 434 öğrencinin Öğrenci Seçme Sınavında elde ettikleri verileri kullanarak öğrencilerin Matematik 1 dersinden elde edeceği başarı durumunu önceden tahmin etmek amaçlanmıştır. Bu veri kümesini kullanarak üyelik fonksiyonlarını belirlemek için yapay sinir ağı ve bulanık mantık yönteminin önemli özelliklerini birleştiren uyarlanabilir ağ tabanlı bulanık çıkarım sistemi (ANFIS) kullanılmıştır. Eğitim aşamasında veri kümesindeki 16 nitelikten farklı kombinasyonlarla seçilen 9 veri niteliği ANFIS yapısına girdi olarak verilmiştir. Fakat dokuz tane girdi parametresine sahip olan bir bulanık çıkarım sisteminin her girdisinin en az üç tane üyelik fonksiyonuna sahip olduğu durumlarda bu çıkarım sisteminde en az 3 9 tane kural meydana gelmektedir. Bu yüzden eğitim işlemi oldukça vakit almakta ve bu işlem için oldukça fazla belleğe ihtiyaç duyulmaktadır. Bu çalışmada, çok verimsiz olan bu yapı yerine hiyerarşik bir yöntem önerilmiştir. Bu yöntemde ANFIS yapısı küçük alt sistemlere ayrılmaktadır. Her alt sistem veri kümesinin bazı parçalarını işlemekte ve elde ettiği çıktı değerlerini sistemden beklenilen asıl çıktı değerinin elde edilmesi için sonuç ANFIS yapısına girdi olarak göndermektedir. Verilerin üçte biri ile yapılan deneme işleminden sonra %77,77 ve %78,47 genel tahmin oranına sahip iki tane iyi sonuç elde edilmiştir. Bu sonuçlar detaylı incelendiğinde, ilk sonuçta Matematik 1 dersinden geçen 85 öğrencinin 64’ü, kalan 59 öğrencinin 48’i doğru tahmin edilmiştir. İkinci sonuçta ise dersten geçen 85 öğrencinin 69’u ve dersten kalan 59 öğrencinin 44’ü doğru tahmin edilmiştir
Subject Keywords
Fuzzy logic
,
Artificial neural network
,
Adaptive network based fuzzy inference system (ANFIS)
,
Hierarchical ANFIS
,
Machine learning
,
Prediction of Mathematics course success
URI
https://hdl.handle.net/11511/51475
Journal
Pamukkale University Journal of Engineering Sciences
DOI
https://doi.org/10.5505/pajes.2014.35220
Collections
Department of Computer Engineering, Article