Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions
Date
2013-05-22
Author
Bilge, Duygu
KAZANCI, NADİDE
Severcan, Feride
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
218
views
0
downloads
Cite This
Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the C=O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.
Subject Keywords
Inorganic Chemistry
,
Organic Chemistry
,
Analytical Chemistry
,
Spectroscopy
URI
https://hdl.handle.net/11511/51604
Journal
JOURNAL OF MOLECULAR STRUCTURE
DOI
https://doi.org/10.1016/j.molstruc.2013.02.031
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Novel Pt(II) complexes containing pyrrole oxime, synthesis, characterization and DNA binding studies
Altunöz Erdoğan, Deniz; Ozalp-Yaman, Seniz (Elsevier BV, 2014-05-05)
Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)(2)]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)CI(L)] (1), [Pt(L)(2)] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, H-1 NMR and ma...
ENANTIOSELECTIVE OXIDATION OF THIOANISOLE TO METYL PHENYL SULFOXIDE BY CHIRAL COMPOUNDS BEARING N-Cl BOND
İPEK, HALİL; Akdağ, Akın (Informa UK Limited, 2015-08-03)
Chiral sulfoxides are used in asymmetric synthesis and are present in various biologically active compounds. Asymmetric synthesis of the sulfoxides has been performed by chiral metal complexes and non-metals containing peroxide and oxide moieties. In this study, a new metal free method has been developed to oxidize thioanisole into methyl phenyl sulfoxide with easily accessible chiral compounds carrying N-Cl bond. For this purpose, chiral amine and amide bearing reagents were synthesized and chlorinated by ...
Benzaldehyde lyase catalyzed synthesis of novel acyloins
Şimşek, İlke; Demir, Ayhan Sıtkı; Department of Chemistry (2009)
α-Hydroxy phosphonates are versatile building blocks for the synthesis of many biologically active compounds that display antiviral, antibacterial, anticancer, pesticide activities beside their enzyme inhibitory activities such as they are the inhibitors of rennin or human immunodeficiency virus (HIV) protease and polymerase. Benzaldehyde lyase is able to catalyze not only C-C bond formation reactions but also C-C bond breaking reactions with high enantioselectivity that brings about the development of new ...
Melatonin affects the order, dynamics and hydration of brain membrane lipids
Akkaş, Sara Banu; Zorlu, Faruk; Severcan, Feride (Elsevier BV, 2007-05-27)
The brain is especially susceptible to free radical attack since it is rich in polyunsaturated fatty acids and consumes very high amounts of oxygen. Melatonin is a non-enzymatic amphiphilic antioxidant hormone that is widely used in medicine for protective and treatment purposes in cases of oxidative stress. In the present work, the effects of the clinically used dose of melatonin (a single intraperitoneal dose of 100 mg/kg) on rat brain homogenate were investigated as a function of temperature using Fourie...
Label-free detection of telomerase activity using guanine electrochemical oxidation signal
Eskiocak, Ugur; Ozkan-Ariksoysal, Dilsat; Ozsoz, Mehmet; Öktem, Hüseyin Avni (American Chemical Society (ACS), 2007-11-15)
Telomerase is an important biomarker for cancer cells and its activation in 85% of all cancer types confers a clinical diagnostic value. A label-free electrochemical assay based on guanine oxidation signal to measure telomerase activity is described. This developed technology combined with a disposable sensor, carbon graphite electrode (CGE), and differential pulse voltammetry (DPV) was performed by using PCR amplicons with/without telomeric repeats as the guanine oxidation signal observed at +1.0 V measure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Bilge, N. KAZANCI, and F. Severcan, “Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions,”
JOURNAL OF MOLECULAR STRUCTURE
, pp. 75–82, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51604.