Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Optical constants and critical point energies of (AgInSe2)(0.75)-(In2Se3)(0.25) single crystals
Date
2020-03-01
Author
Isik, M.
Nasser, H.
Guseinov, A.
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
AgInSe2 and In2Se3 are two attractive semiconducting materials for various technological applications especially for photovoltaic applications. In the present study, structural and optical properties of (AgInSe2)(x)-(In2Se3)(1-x) crystals for composition of x = 0.75 corresponding to chemical formula of Ag3In5Se9 were characterized by X-ray diffraction, energy-dispersive spectroscopy, room temperature transmission, and ellipsometry experiments. The transmittance spectrum was analyzed to reveal energy band gap. The derivative spectrophotometry analysis resulted in band gap energy of 1.22 eV. The spectra of complex dielectric function, refractive index and extinction coefficient were presented between 1.6 and 6.2 eV from the outcomes of ellipsometry analyses. Critical point energies have been determined using the derivative analyses of dielectric function. Five critical points at 2.70, 3.30, 4.05, 4.73, and 5.42 eV were revealed from the analyses. Crystal structure and atomic composition in semiconducting compound were also reported in the present work. The obtained results were compared with those reported for constituent compounds.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/51832
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-020-03026-1
Collections
Department of Physics, Article