Polymerization of 1,2-epoxy-4-epoxyethylcyclohexane

1986-12
Usanmaz, Ali
Asaid, Adel
Radiation‐induced polymerization of 1,2‐epoxy‐4‐epoxyethylcyclohexane (EECH) has been carried out at different temperatures in solid and liquid states. Activation energy was calculated from Arrhenius plot and ionic mechanism was proposed. Molecular weights for some polymer samples were determined by cryscopic method and compared with their intrinsic viscosities. Cationic polymerization of EECH initiated by BF3 · O(C2H5)2 and anionic polymerization initiated by NaOH are also studied. Two epoxy rings can be opened for polymerization selectively by radiation, but not by chemical initiators. The expected polyether structure was observed from the IR spectrum. Polymers obtained were shown to be amorphous from X‐ray photographs.
Journal of Polymer Science Part A: Polymer Chemistry

Suggestions

POLYMERIZATION OF BIS(4-BROMO-2,6-DICHLOROPHENOXO) ETHYLENEDIAMINE COPPER(II) COMPLEX BY ELECTRO-INITIATION
KISAKUREK, D; YIGIT, S (Elsevier BV, 1991-01-01)
Bis(4-bromo-2,6-dichlorophenoxo) ethylenediamine copper(II) complex has been polymerized using electro-initiation by constant potential electrolysis, in dimethylformamide-tetrabutylammonium fluoroborate solvent-supporting electrolyte couple, at room temperature under air or N2. The process leads to low molecular weight (5.6 x 10(3)) linear poly(dichlorophenylene oxide). The structures of the polymers were determined by H-1-NMR and C-13-NMR. The kinetics of the polymerization were followed by in situ cycl...
POLYMERIZATION OF 1-ETHYNYL-1-CYCLOHEXANOL BY RADIATION, ELECTROINITIATION, AND CHEMICAL CATALYSTS
Usanmaz, Ali; KIZILIRMAK, N (Informa UK Limited, 1992-01-01)
Solid-state polymerization of 1-ethynyl-1-cyclohexanol was carried out by irradiation in vacuum and in open air at 20-degrees-C. Radiation-induced polymerization was also done in a benzene solution. The products were mixtures of oligomers and polymers. IR, NMR, UV, and x-ray investigations showed the initial formation of trimer, oligomer, and polymer. The polymer fraction increased with an increase of conversion. Electroinitiated polymerization gave soluble and insoluble fractions. The soluble fraction was ...
Polymerization of propylene oxide by the Pruitt-Baggett catalyst
Çolak, Nureddin; Alyürük, Kemal (Elsevier BV, 1989-9)
The Pruitt-Baggett adduct (PBA) which formed from the reaction of FeCl3 with propylene oxide (PO) was hydrolysed in diethyl ether (ether) solutions at different mole ratios. Although the hydrolysates were insoluble in ether they could be converted into PO-soluble form (PBC) by a thermal treatment providing that the r value was kept smaller or equal to unity. PBC polymerized PO concurrently into a mixture of high molecular weight crystalline polymer with low molecular weight non-crystallizable oligomers. Th...
Synthetic Design of Polyester Electrolytes Guided by Hydrophobicity Calculations
Yıldırım, Erol; Peretic, Matthew J.; Pasquinelli, Melissa A.; Mathers, Robert T. (American Chemical Society (ACS), 2016-10-25)
Partition coefficients (LogP) help to quantify hydrophobicity, which can be used to guide the design of polymer electrolytes with properties. Thus, this study combined synthetic experiments and modeling to produce polyester electrolytes that solubilize lithium salts. These polyester electrolytes were derived from natural sources and polymerized with different ratios of polyols (diglycerol, glycerol, and diethylene glycol) and citric acid in the presence of lithium salts (LiTf and LiTFSI). The Fisher esterif...
Topotactic solid-state polymerization of 3-aminocrotonamide by radiation
Usanmaz, Ali; Melad, OK (Wiley, 1996-04-30)
Radiation-induced solid-state polymerization of 3-aminocrotonamide (3-amino-2-butenamide) was carried out at room temperature, in open air atmosphere and under vacuum condition. The polymer obtained was white powder, soluble in methanol, but insoluble in water. The nature of polymers were investigated by IR, UV, x-ray, DP-MS, and elemental analysis to elucidate the mechanism of the polymerization. The polymer was crystalline with melting point in the range of 245-255 degrees C. The cell parameters and space...
Citation Formats
A. Usanmaz and A. Asaid, “Polymerization of 1,2-epoxy-4-epoxyethylcyclohexane,” Journal of Polymer Science Part A: Polymer Chemistry, pp. 3263–3269, 1986, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52247.