Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method
Date
2009-09-24
Author
Senturk, Osman S.
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
347
views
0
downloads
Cite This
This paper proposes the Waveform Reconstruction Method (WRM), which is utilized in the single-phase Series Active Filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2.5 kW single-phase SAF compensated system prove the theory.
Subject Keywords
Harmonic
,
Harmonic extraction
,
Isolation
,
Power quality
,
Rectifier
,
Series active filter
URI
https://hdl.handle.net/11511/52616
Conference Name
IEEE Energy Conversion Congress and Exposition
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
High Performance Harmonic Isolation and Load Voltage Regulation of the Three-Phase Series Active Filter Utilizing the Waveform Reconstruction Method
Sentuerk, Osman S.; Hava, Ahmet Masum (2008-10-09)
This paper develops the Waveform Reconstruction Method (WRM) for high accuracy and bandwidth signal decomposition of voltage harmonic type (V-type) three-phase diode rectifier load voltage into its harmonic and fundamental components, which are utilized in the Series Active Filter (SAF) control algorithms. The SAF compensated system utilizing WRM provides high performance load harmonic voltage isolation and load voltage regulation at steady-state and during transients compared to the system utilizing the sy...
Performance Enhancement of the Single-Phase Series Active Filter by Employing the Load Voltage Waveform Reconstruction and Line Current Sampling Delay Reduction Methods
Senturk, Osman S.; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2011-08-01)
This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference...
High-Performance Harmonic Isolation and Load Voltage Regulation of the Three-Phase Series Active Filter Utilizing the Waveform Reconstruction Method
Senturk, Osman S.; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2009-11-01)
This paper develops a waveform reconstruction method (WRM) for high accuracy and bandwidth signal decomposition of voltage-harmonic-type three-phase diode rectifier load voltage into its harmonic and fundamental components, which are utilized in the series active filter (SAF) control algorithms. The SAF-compensated system utilizing WRM provides high-performance load harmonic voltage isolation and load voltage regulation at steady-state and during transients compared to the system utilizing the synchronous r...
Design and implementation of a voltage source converter based statcom for reactive power compensation and harmonic filtering
Çetin, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-co...
A Current Source Converter-Based Active Power Filter for Mitigation of Harmonics at the Interface of Distribution and Transmission Systems
Terciyanli, Alper; Avci, Tulay; Yilmaz, Ilker; Ermis, Cezmi; Kose, Kemal Nadir; Acik, Adnan; Kalaycioglu, Alper Sabri; Akkaya, Yener; Cadirci, Isik; Ermiş, Muammer (2012-07-01)
A medium-power current source converter (CSC)-based shunt active power filter (APF) system is designed and implemented to suppress the amplification of low-order harmonics at the medium-voltage (MV) interface bus between the distribution and transmission systems, owing to the presence of large shunt capacitor banks installed only for reactive power compensation. Four CSC-based APF modules designed at 1.0 kV are operated in parallel and connected to the 31.5-kV MV bus via a specially designed coupling transf...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. S. Senturk and A. M. Hava, “High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method,” presented at the IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52616.