Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improved Second Generation Electromagnetic MEMS Energy Scavenger
Date
2011-12-02
Author
Turkyilmaz, Serol
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
135
views
0
downloads
Cite This
This paper presents an optimized second generation electromagnetic (EM) MEMS power generator which can harvest energy from low frequency external vibrations. In the second generation scavenger, power is generated through planar electromagnetic induction using a magnet on the low frequency actuation plane, and coils on the high frequency resonance plane. It is demonstrated in this work through modeling and simulation that the generated power level is maximized by geometric optimization of the high frequency resonance plane. The geometric improvements in the diaphragm arms and magnetic actuation area within the MEMS device yield 318 nW maximum power and 23.8 mV maximum voltage. This corresponds to 2.6x improvement in output power, and 1.5x improvement in output voltage compared to previously reported design.
Subject Keywords
Mobile
URI
https://hdl.handle.net/11511/53023
DOI
https://doi.org/10.1109/iceac.2011.6136694
Conference Name
International Conference on Energy Aware Computing (ICEAC)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Design and prototyping of second generation METU MEMS electromagnetic micro-power generators
Turkyilmaz, Serol; Külah, Haluk; Muhtaroglu, Ali (2010-12-01)
This paper presents an electromagnetic (EM) vibration to electrical power generator which can effectively harvest energy from low frequency external vibrations. The reported second generation MEMS energy scavenger module up-converts low frequency environmental vibrations before mechanical-to-electrical conversion. Power is generated through planar electromagnetic induction using a magnet on the low frequency actuation plane, and coils on the high frequency resonance plane. The proposed approach has been dem...
Power-Efficient Hybrid Energy Harvesting System for Harnessing Ambient Vibrations
Chamanian, Salar; Çiftci, Berkay; Ulusan, Hasan; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
This paper presents an efficient hybrid energy harvesting interface to synergistically scavenge power from electromagnetic (EM) and piezoelectric (PE) sources, and drive a single load. The EM harvester output is rectified through a self-powered active doubler structure, and stored on a storage capacitor. The stored energy is then transferred to the PE harvester to increase the damping force and charge extraction. The total synergistically extracted power from both harvesters is more than the power obtained ...
An electromagnetic micro power generator for low-frequency environmental vibrations
Külah, Haluk (2004-01-01)
This paper presents an electromagnetic (EM) vibrationto-electrical power generator which can efficiently scavenge energy from low-frequency external vibrations. The reported generator up-converts low-frequency environmental vibrations to a much higher frequency through a novel electro-mechanical frequency up-converter using a magnet, and hence provides efficient energy conversion even at low frequencies. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating c...
AN ELECTROMAGNETIC MICRO POWER GENERATOR FOR LOW FREQUENCY ENVIRONMENTAL VIBRATIONS BASED ON THE FREQUENCY UP-CONVERSION TECHNIQUE
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2009-01-29)
This paper presents an electromagnetic (EM) vibration-to-electrical power generator, which can efficiently harvest energy from low-frequency external vibrations by using frequency up-conversion. The generator can effectively scavenge energy from low frequency environmental vibrations of 70-150 Hz and generates 0.57 mV voltage with 0.25 nW power from a single cantilever at a vibration frequency of 95 Hz. The fabricated generator size is 8.5 x 7 x 2.5 mm(3) and a total number of 20 serially connected cantilev...
A Mechanical Frequency Up-Conversion Mechanism for Vibration Based Energy Harvesters
Zorlu, Ozge; Topal, Emre Tan; Külah, Haluk (2009-10-28)
This paper presents a new mechanical frequency up-conversion (FUC) mechanism for harvesting energy from external low frequency vibrations. The structure consists of a magnet placed on a support, a polystyrene cantilever carrying a pick-up coil, and a mechanical barrier which converts low frequency vibrations to a higher frequency, hence increasing the efficiency of the system. The tested structure proved to give 20.3 mV and 68.7 mu W RMS power output by up-converting 10 Hertz external vibration to 643 Hertz...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Turkyilmaz, A. Muhtaroglu, and H. Külah, “Improved Second Generation Electromagnetic MEMS Energy Scavenger,” presented at the International Conference on Energy Aware Computing (ICEAC), Istanbul, TURKEY, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53023.