Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biodegradable polymers as scaffolds of tissue engineering: performance and biocompatibility
Date
2006-06-01
Author
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/53219
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering
Ashammakhi, N.; Ndreu, A.; Piras, A. M.; Nikkola, L.; Sindelar, T.; Ylikauppila, H.; Harlin, A.; Gomes, M. E.; Neves, N. M.; Chiellini, E.; Chiellini, F.; Hasırcı, Vasıf Nejat; Redl, H.; Reis, R. L. (2007-03-01)
With increasing interest in nanotechnology, development of nanofibers (n-fibers) by using the technique of electrospinning is gaining new momentum. Among important potential applications of n-fiber-based structures, scaffolds for tissue-engineering represent an advancing front. Nanoscaffolds (n-scaffolds) are closer to natural extracellular matrix (ECM) and its nanoscale fibrous structure. Although the technique of electrospinning is relatively old, various improvements have been made in the last decades to...
Biodegradable elastomers for biomedical applications and regenerative medicine
Bat, Erhan; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A. (Future Medicine Ltd, 2014-05-01)
Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After implantation in the body, biomedical devices may be subjected to degradation and erosion. Understanding the mechanisms of these processes is essential for the development of biomedical devices or implants with a ...
Biocompatible Hydrogen-Bonded Polymer Multilayers: Tuning Film Destruction
Erel Göktepe, İrem (null; 2007-08-19)
Bioactive surface design based on conducting polymers and applications to biosensors
Erdem, Rengin; Özen, Can; Yağcı Acar, Havva Funda; Department of Biotechnology (2012)
Quantum dots are fluorescent semiconductor nanocrystals that have unique optical properties such as high quantum yield and photostability. These nanoparticles are superior to organic dyes and fluorescent proteins in many aspects and therefore show great potential for both in vivo and in vitro imaging and drug delivery applications. However, cytototoxicity is still one of the major problems associated with their biological applications. The aim of this study is in vitro characterization and assessment of bio...
Bioactive surface design based on conducting polymers and applications to biosensors
Ekiz, Fulya; Toppare, Levent Kamil; Timur, Suna; Department of Biotechnology (2012)
An underlying idea of joining the recognition features of biological macromolecules to the sensitivity of electrochemical devices has brought the concept of biosensors as remarkable analytical tools for monitoring desired analytes in different technological areas. Over other methods, biosensors have some advantages including high selectivity, sensitivity, simplicity and this leads to solutions for some problems met in the measurement of some analytes. In this context, conducting polymers are excellent alter...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. N. Hasırcı, “Biodegradable polymers as scaffolds of tissue engineering: performance and biocompatibility,” 2006, vol. 273, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53219.