Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Differential expression of genes possibly involved in incompatible interaction between barley and powdery mildew
Date
2011-09-01
Author
ERSOY, FİGEN
Ridout, Christopher J.
Akkaya, Mahinur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
The various domains of a plant disease resistance protein from wheat were found to be interacting with yeast proteins when screened via yeast two hybrid analyses. These genes are considered to play roles in disease resistance response. Thus, the expression levels in Mla3 mediated Powdery Mildew (Blumeria graminis f.sp. hordei, Bgh) disease resistance in barley were determined. The barley homologs of ARD1, CPR7, CSE1, GCN2 and SRP72, were partially cloned and sequenced. Their differential expression was confirmed using qRT-RCR at 6 hpi, 12 hpi, 24 hpi and 72 hpi upon incompatible Bgh infection in a resistant barley line (Pallas-02). All of the genes except HvCPR7 showed maximum expression levels at 12 hpi and gradually dropped at 24 and 72 hpi. On the other hand, HvCPR7 showed highest induction at 6 hpi, indicating that HvCRP7 is an even earlier responding gene. Most of the human homologues of these genes have been widely studied and found to have roles in apoptosis. As apoptosis is very important in the plant disease resistance response, qRT-PCR was performed to check if the genes are induced in resistant barley after powdery mildew inoculation. All the five genes were found to be differentially expressed in incompatible interactions between barley and powdery mildew.
Subject Keywords
Biotechnology
,
Bioengineering
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/53398
DOI
https://doi.org/10.1016/j.copbio.2011.05.116
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Analyses of extracellular protein production in Bacillus subtilis - II: Responses of reaction network to oxygen transfer at transcriptional level
KOCABAŞ, PINAR; ÇALIK GARCİA, GÜZİDE; Çalık, Pınar; Ozdamar, Tuncer H. (Elsevier BV, 2017-11-15)
Oxygen transfer influences intracellular fluxes which are orchestrated by genome and its transcription in Bacillus subtilis throughout fermentation in recombinant human growth hormone (rhGH) production. Responses of B. subtilis reaction network to oxygen transfer were analysed at transcriptional level with determined transcriptome and calculated intracellular fluxes by the reconstructed genome scale model iBsu1144(rhGH) based on updated gene-enzyme-reaction data. iBsu1144(rhGH) employing 1067 reactions link...
Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase
Çalık, Pınar (Elsevier BV, 2001-07-01)
The metabolic fluxes through the central carbon pathways were calculated for the genus Bacillus separately for the enzymes serine alkaline protease (SAP), neutral protease (NP) and alpha -amylase (AMY) on five carbon sources that have different reduction degrees (gamma), to determine the theoretical ultimate limits of the production capacities of Bacillus species and to predict the selective substrate for the media design. Glucose (gamma = 4.0), acetate (gamma = 4.0), and the TCA cycle organic-acids succina...
QCM-based DNA biosensor for detection of genetically modified organisms (GMOs)
Karamollaoglu, Irem; Oektem, Hueseyin Avni; Mutlu, Mehmet Kayhan (Elsevier BV, 2009-05-15)
Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor for the detection of the hybridization of CaMV 35S promoter sequence (P35S) was investigated for the screening of genetically modified organisms (GMOs). Attention was focused on the choice of the coating chemistry that could be used for the immobilization of probe sequences on the gold surface of the quartz crystal. Two immobilization procedures were tested and compared considering the amount of the immobilized P35S probe ...
In planta determination of GaMyb transcription factor as a target of pathogen induced microRNA, mir159
Akkaya, Mahinur; Dagdas, Gulay Gok; Dagdas, Yasin F. (2011-09-01)
One of the molecular mechanisms underlying the plant–pathogen interactions is the regulation of gene expressions in plant responses by microRNAs which are either stimulated or silenced against pathogen attacks. Among the plant miRNAs, we found that mir159 is one of which that differentially expressed upon Blumeria graminis f. sp. hordei (Bgh) infected resistant and susceptible barley lines. The study aims to confirm its role in regulating one of its putative target genes, GaMyb transcription factor, in vivo...
Regulatory effects of alanine-group amino acids on serine alkaline protease production by recombinant Bacillus licheniformis
Çalık, Pınar; Ozdamar, TH (Wiley, 2003-04-01)
Influences of the concentration and addition time of alanine-group amino acids, i.e. alanine, leucine and valine, on serine alkaline protease (SAP) synthesis were investigated by Bacillus licheniformis (DSM 1969) carrying pHV1431::subC in a defined medium to identify the amino acids creating intracellular reaction-rate limitation in SAP production. While the precursors of alanine-group amino acids, pyruvate and alanine, did not affect SAP production considerably within the range 0-15 mM, the addition of leu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. ERSOY, C. J. Ridout, and M. Akkaya, “Differential expression of genes possibly involved in incompatible interaction between barley and powdery mildew,” 2011, vol. 22, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53398.