ARCHITECTURES FOR VIBRATING MASS ATTITUDE CONTROL ACTUATORS

2015-01-15
Akbulut, Burak
Tekinalp, Ozan
Reaction wheels, magnetic torque rods, momentum wheels and control moment gyroscopes (CMGs) are the most common actuators used in attitude control. However, they use rotor and/or gimbal mechanisms susceptible to failure. An alternative solution may be vibrating mass actuators. Previous research by Reiter et al. and Chang et al. showed the possibility of obtaining a net output torque from vibrating actuators. To build upon this, current research aims to expand the vibratory actuators to different and more complex architectures such as double axis CMGs. Additionally simulation models will be built to investigate their functioning in satellite attitude pointing scenarios.
25th American-Astronautical-Society (AAS)/American-Institute-of-Aeronautics-and-Astronautics (AIAA) Space Flight Mechanics Meeting

Suggestions

Vibration based and miniaturizable satellite attitude actuator
Akbulut, Burak; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
Major malfunctions are originated from bearing mechanisms of reaction wheels, momentum wheels and control moment gyroscopes. Current research investigates the theoretical background for attitude actuators depending on oscillatory actuation which can be implemented without bearings. The approximate angular momentum and dynamics of such a device is formulated. A prototype vibration based attitude control actuator was designed and produced. Design implications originating from the mathematical model of the act...
Development of an iterative method for liquid-propellant combustion chamber instability analysis
Cengiz, Kenan; Özyörük, Yusuf; Department of Aerospace Engineering (2010)
Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vibrations is a very significant step in rocket motor design. It occurs when the unsteady heat release due to combustion happens to feed the acoustic oscillations of the closed duct forming a feed-back system. The resultant vibrations concerned may even lead to total failure of the rocket system unless analysed and tested thoroughly. This thesis aims developing a linear numerical analysis method for the growth rate of inst...
NONLINEAR DYNAMIC-MODEL AND ITS SOLUTION FOR A HIGH-SPEED CAM MECHANISM WITH COULOMB-FRICTION
Ünlüsoy, Yavuz Samim; Tümer, Sami Turgut (Elsevier BV, 1994-01-20)
The dynamic behavior of overhead cam mechanisms, commonly used in automotive applications, is strongly influenced by the Coulomb friction at the rocker arm pivot. In this study, a non-linear one-degree-of-freedom model of such a mechanism including Coulomb friction has been developed. An exact quasi-linear solution to the equations representing the non-linear behavior has been obtained. The effects of Coulomb friction at different cam speeds are investigated using typical parameter values. A critical examin...
Estimation of effective parameters and operational response of tuned vibration absorbers
Özden, Hasan Can; Özgen, Gökhan Osman; Department of Mechanical Engineering (2019)
In this study, swing up and stabilization of on/off type of cold gas thruster driven inverted pendulum is accomplished. First, pulse width modulator (PWM) design method is generated to obtain quasi-linear thrust output from on/off type of thruster. Than, single axis angle controller is designed. Designed angle controller and PWM scheme are tested and verified on single axis angle control test setup. Finally, an other freedom is attached to single axis test setup and rotary inverted pendulum (Furuta Pendulum...
Design of kalman filter based attitude determination and control algorithms for a LEO satellite
Efendioğlu, Gamze; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2019)
The design of different attitude controllers by using reaction wheels and magnetic rods as torque sources and the design of a multi-sensor integrated navigation system are developed for a three-axis stabilized Earth-orbiting microsatellite and presented in this thesis. Firstly, the fundamental parameters relevant to satellite attitude determination are presented, such as attitude sensors and actuators, space environmental effects, coordinate frames, satellite dynamic/kinematic equations with control compone...
Citation Formats
B. Akbulut and O. Tekinalp, “ARCHITECTURES FOR VIBRATING MASS ATTITUDE CONTROL ACTUATORS,” Williamsburg, VA, 2015, vol. 155, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53417.