Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fastly Converging 2D Solutions of TE-EFIE on Modified Superformula Contours Optimized via Genetic Algorithms
Date
2017-07-14
Author
Guler, Sadri
Onol, Can
Ergül, Özgür Salih
SEVER, EMRAH
DİKMEN, FATİH
TUCHKİN, YURY ALEXANDEROVİCH
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
0
downloads
Cite This
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of hyper-singular electric field integral equation (EFIE) in 2D. A version of superformula tailored for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the hyper-singular kernel and convergence of the solution for EFIE assuming TE polarization will be presented.
URI
https://hdl.handle.net/11511/53469
Conference Name
9th International Conference on Power Electronics / Energy Conversion Congress and Exposition Asia (ICPE-ECCE Asia)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Modified Superformula Contours Optimized via Genetic Algorithms for Exponentially Converging 2D Solutions of MFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2017-05-25)
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of magnetic field integral equation (MFIE) in 2D either for TM or TE polarized excitations. A version of superformula modified for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the MFIE kernel and convergence of the solution ...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Modified Superformula Contours Optimized via Genetic Algorithms for Fastly Converging 2D Solutions of EFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Hatipoglu, M. Enes; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2016-07-01)
It is known that solutions of the integral equations converge at the smoothness rate of the parametrical function representing the boundary contour. Thus using an infinitely smooth parametrical representation with derivatives of all orders results into exponentially converging solutions. A version of superformula tailored for this purpose is exposed to optimization of its parameters via genetic algorithms to obtain smooth parameterization for desired boundaries in two dimensional problems. The convergence o...
Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2012-04-01)
Exact bound state solutions and corresponding normalized eigenfunctions of the radial Schrodinger equation are studied for the pseudoharmonic and Mie-type potentials by using the Laplace transform approach. The analytical results are obtained and seen that they are the same with the ones obtained before. The energy eigenvalues of the inverse square plus square potential and three-dimensional harmonic oscillator are given as special cases. It is shown the variation of the first six normalized wave-functions ...
ACCURATE COMPUTATION OF THE ENERGY-SPECTRUM FOR POTENTIALS WITH MULTIMINIMA
Taşeli, Hasan (Wiley, 1993-01-01)
The eigenvalues of the Schrodinger equation with a polynomial potential are calculated accurately by means of the Rayleigh-Ritz variational method and a basis set of functions satisfying Dirichlet boundary conditions. The method is applied to the well potentials having one, two, and three minima. It is shown, in the entire range of coupling constants, that the basis set of trigonometric functions has the capability of yielding the energy spectra of unbounded problems without any loss of convergence providin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Guler, C. Onol, Ö. S. Ergül, E. SEVER, F. DİKMEN, and Y. A. TUCHKİN, “Fastly Converging 2D Solutions of TE-EFIE on Modified Superformula Contours Optimized via Genetic Algorithms,” presented at the 9th International Conference on Power Electronics / Energy Conversion Congress and Exposition Asia (ICPE-ECCE Asia), Seoul, SOUTH KOREA, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53469.