Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetically Geared Direct Drive Wind Generator Thermal Analysis
Date
2017-05-27
Author
Zeinali, Reza
Ertan, Hulusi Bülent
Yamali, Cemil
Tarvirdilu-Asl, Rasul
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
This paper considers Dual Stator Spoke Array Vernier Permanent Magnet (DSSA-VPM) generator for the direct drive wind-electric energy conversion. The structure of the generator is described. Although how this design is optimized is not discussed, dimensions of the designed generator are given. In electrical machine design thermal performance is naturally of utmost importance. In this paper thermal performance of the design and how its temperature can be kept within the temperature limit imposed by its insulation class and the permanent magnets used is investigated. It is found that when air flow within the generator is not permitted, at rated load condition the generator temperature reaches very high levels. To lower the operating temperature, ventilation holes are introduced to the end plates of the frame. Also some blades are placed on the rotor to help flow of air over the end windings. A model is introduced to calculate the air speed in the region where air flows. Using the calculated air speed a new heat transfer coefficient is determined for the region where air flows. It is found out that with the mentioned modifications to the structure of the generator the designed generator temperature rise can be kept within the value permitted for its insulation class. Therefore, the power density of the design can be safely compared with the power density of other types of designs for direct drive turbines. It is found that DSSA-VPM generator topology offers a clear advantage over other types of generators considered in the literature.
Subject Keywords
Thermal analysis
,
Permanent magnet generator
,
Wind energy conversion
,
Direct drive
URI
https://hdl.handle.net/11511/53549
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Design of a tubular switched reluctance linear generator for wave energy conversion based on ocean wave parameters
Mendes, R. P. G.; Calado, M. R. A.; Mariano, S. J. P. S.; Cabrita, C. M. P. (2011-09-10)
This work presents a procedure for the design and analysis of a linear tubular switched reluctance generator for wave energy conversion. The generator is meant to be applied to a direct drive wave energy converter, namely a point absorber. The device is modeled according to wave climate conditions at Esposende site in the Portuguese coast. The procedure starts with statistical analysis of the local random ocean behavior in order to determine most likely values of occurrence for the wave parameters in questi...
Sliding Mode Control Of Permanent Magnet Synchronous Motor Fed By Wind Turbine Generator Taking Saturation Effect Into Account
Benchabane, F.; Titaouine, A.; Bennis, O.; Guettaf, A.; Yahia, K.; Taibi, D. (2011-09-10)
In this paper, we present the voltage build up process and the terminal voltage control of an isolated wind powered induction generator driven by a variable speed wind turbine using rotor flux oriented vector control. A description of the studied system is provided, and a simulation study is presented. The model used for the autonomous induction generator is a diphase one obtained by application of the Park transform. Theis model permits, when adopting some simplifying hypotheses, taking account the saturat...
Self excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE Std 141-1993
Ermiş, Muammer; Cadirci, I; Zenginobuz, G; Tezcan, H (2000-10-12)
Self-excitation of induction motors compensated by permanently-connected capacitors is investigated in this paper. Theoretical analyses of self-excitation phenomenon are carried out by using some simplified equivalent circuits, and a hybrid mathematical model in ABC/dq axes, respectively in steady-state, and transient-state. An unusual operating condition about water pumping stations is reported, in which water within the pipeline may drive the motor in the reverse direction at speeds higher than synchronou...
Axial flux permanent magnet machine with novel flat winding made of conductor sheet
Çakal, Gökhan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2020-10-13)
This thesis proposes a novel winding topology, called flat winding, as an alternative to the conventional windings with stranded round wires for electric machines. It is made of a thin conductor sheet by industrial automation tools such as stamping press, laser, or water jet. Since these tools are widely used in the production of electric machines, the flat winding topology enjoys the advantage of the ease of manufacturing without significant modification on the production line. Superior current ratings, sh...
DC Link Capacitor Optimization for Integrated Modular Motor Drives
Ugur, Mesut; Keysan, Ozan (2017-06-21)
In this paper, selection of optimum DC link capacitor for Integrated Modular Motor Drives (IMMD) is presented. First, a review of IMMD technologies is given and current research and future prospects are studied. Inverter topologies and gate drive techniques are evaluated in terms of DC link performance. The urge for volume reduction in IMMD poses a challenge for the selection of optimum DC link capacitor. DC Link capacitor types are discussed and critical aspects in selecting the DC links capacitor are list...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Zeinali, H. B. Ertan, C. Yamali, and R. Tarvirdilu-Asl, “Magnetically Geared Direct Drive Wind Generator Thermal Analysis,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53549.