Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Adhesion of an HTPB-IPDI-based liner elastomer to composite matrix and metal case
Date
1997-06-20
Author
Haska, SB
Bayramli, E
Pekel, F
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
184
views
0
downloads
Cite This
Adhesional characteristics of an elastomeric liner composition toward a highly filled composite matrix and metal case were investigated. The system is composed of an excess isocyanate functionality in the elastomer compared to an excess hydroxyl functionality in the composite matrix. Both phases essentially contain the same binder (HTPB) and curing agent (IPDI). A bifunctional aziridine (MAPO) is used as a bond (adhesion) promoter. The effects of the R value, triol/diol ratio, and MAPO concentration on the adhesive nature of the metal-elastomer-matrix system were investigated by tensile and peel test methods. Maximum T-peel values were obtained for the NCO/OH ratio of R = 1.15 and for the triol/diol ratio of 0.054. The optimum MAPO concentration was found to be around 1-2% for the elastomer. As a result of this investigation, three candidate compositions were selected to be employed as an elastomeric material. On these compositions, metal-elastomer-composite (MEC) tensile, MEC-shear, lap-shear, elastomer-composite (EC) peel, and T-peel tests were applied. These compositions reflect acceptable combinations of strength and elasticity as well as good adhesive values required for a liner material. In particular, one of the compositions tested seems to be a good candidate when all the required characteristics of an elastomeric liner material are considered. It has a large enough elasticity with the required modulus to withstand the compressive and shearing forces in applications together with good adhesive properties toward the composite matrix and the metal. (C) 1997 John Wiley & Sons, Inc.
Subject Keywords
Elastomer
,
Liner
,
Adhesion
,
Composites
,
HTPB
,
Diisocyanate
,
Bond promoter
,
Tensile
,
Shear
,
Peel
URI
https://hdl.handle.net/11511/53846
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Behaviour of PLA/POSS nanocomposites: Effects of filler content, functional group and copolymer compatibilization
Meyva Zeybek, Yelda; Kaynak, Cevdet (2021-04-01)
The main purpose of this study was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of "Filler Content", nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of "Functional Group," basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS str...
Mechanical properties of HTPB-IPDI-based elastomers
Haska, SB; Bayramli, E; Pekel, F; Özkar, Saim (1997-06-20)
A polyurethane elastomer having mechanical and adhesive properties suitable for liner applications in solid rocket propellants was developed using HTPB as the prepolymer and IPDI as the curing agent. The effects of the NCO/OH ratio (R value) and the triol/diol ratio on the mechanical properties of the polyurethane matrix were investigated. The reaction of HTPB and IPDI is followed by monitoring the changes in the IR absorption bands of the NCO stretching at 2255 cm(-1) and the CO stretching at 1730 cm(-1). ...
Non-contact atomic force microscope in ultra high vacuum using radiation pressure excitation of cantilever with Fabry-Perot interferometer
Karagöz, Ercan; Oral, Ahmet; Department of Physics (2017)
In this study Non-Contact Atomic Force Microscope (NC-AFM) imaging was performed by excitation of the cantilever via radiation pressure in a custom Ultra-High Vacuum (UHV) system. Both the excitation of the cantilever and the measurement of the deflection of the cantilever were done by employing a fiber Fabry-Pérot interferometer obtained by a TiO2 coating of the fiber end. This coating allows for a several times higher interference slope. The second normal mode of the cantilever oscillation, along with the...
Piezoelectric torsional actuation in d(36) shear-mode PMN-PT single crystals
Berik, Pelin; Chang, Wei-Yi; Jiang, Xiaoning (2018-03-08)
This paper presents an experimental and numerical characterization of a piezoelectric d(36) shear-based torsion actuator made of xPb(Mg1/3Nb2/3)O-3-(1-x)PbTiO3 (PMN-PT) single crystals embedded between Polydimethylsiloxane (PDMS) layers. The generated rate of twist value of the piezoelectric d(36)-mode PMN-PT single crystal composite torsion actuator was obtained using a laser vibrometer from the maximum detected transverse deflection measurement. The quasi-static torsion actuation experiments were conducte...
Miscibility of methylmethacrylate-co-methacrylic acid polymer with magnesium, zinc, and manganese sulfonated polystyrene ionomers
Alkan, C; Yurtseven, N; Aras, L (2005-01-01)
The miscibility of methyl methacrylate-co-methacrylic acid polymer (MMA-MAA) with metal neutralized sulfonated polystyrene ionomers was investigated by viscometry, differential scanning calorimetry (DSC), and Fourier transform infrared radiation spectroscopy (FTIR) techniques. Polystyrene (PS) was sulfonated by acetic anhydride and sulfuric acid and the sulfonation degree was found to be 2.6 mole percent, and 2.6 mole percent sulfonated polystyrene was neutralized by Mg, Zn, and Mn salts. The miscibility be...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Haska, E. Bayramli, F. Pekel, and S. Özkar, “Adhesion of an HTPB-IPDI-based liner elastomer to composite matrix and metal case,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 2355–2362, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53846.