Full-Wave Analysis of Three-Dimensional Optical Metamaterials Involving Deformed Nanowires

2015-09-12
Karaosmanoglu, B.
Yılmaz, Ayşen
Ergül, Özgür Salih
We present computationally intensive electromagnetic analysis of metamaterials involving deformed nanowires. Random deformations are introduced to modify perfect nanowires in order to investigate the effect of geometric deviations on scattering properties of optical metamaterials. Numerical simulations of realistic structures of finite extent are performed accurately and efficiently using a rigorous simulation environment based on surface formulations and the multilevel fast multipole algorithm (MLFMA). Statistically common results of deformations, such as forward-scattering enhancements, are demonstrated on realistic metamaterial models.

Suggestions

Fast and accurate analysis of optical metamaterials using surface integral equations and the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2013-09-13)
We present fast and accurate simulations of optical metamaterials using surface integral equations and the multilevel fast multipole algorithm (MLFMA). Problems are formulated with the electric and magnetic current combined-field integral equation and solved iteratively with MLFMA, which is parallelized using the hierarchical strategy on distributed-memory architectures. Realistic metamaterials involving dielectric, perfectly conducting, and plasmonic regions of finite extents are solved rigorously with the...
Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2013-03-01)
Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these ch...
On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures
Kocaman, Serdar; Panoiu, Nicolae C.; Lu, Ming; Wong, Chee Wei (2012-02-15)
We demonstrate chip-scale flat-top filters at near-IR wavelengths using negative index photonic crystal based MachZehnder interferometers. Supported by full three-dimensional numerical simulations, we experimentally demonstrate a new approach for engineering high-pass, low-pass, bandpass, and band-reject filters, based on designing the photonic band diagram both within the bandgap frequency region and away from it. We further show that our approach can be used to design filters that have tunable multilevel ...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Analysis of perfectly matched double negative layers via complex coordinate transformations
Kuzuoğlu, Mustafa (2006-12-01)
Complex coordinate transformations are introduced for the analysis of time-harmonic electromagnetic wave propagation in perfectly matched double negative layers. The layer is perfectly matched to free space in the sense that any incident plane wave is transmitted through the free space-material interface without reflection, irrespective of the frequency and angle of incidence of the plane wave. The material constitutive parameters are obtained by mapping spatial coordinates into a manifold in complex space....
Citation Formats
B. Karaosmanoglu, A. Yılmaz, and Ö. S. Ergül, “Full-Wave Analysis of Three-Dimensional Optical Metamaterials Involving Deformed Nanowires,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53857.