Gentamicin release from a hydroxyapatite - Gelatin composite

1997-05-01
Yaylaoglu, MB
Korkusuz, Feza
Hasırcı, Vasıf Nejat
This study was carried out to develop a calcium phosphate-gelatin composite implant that would mimic the structure and function of bone to fill voids or gaps as well as to release bioactive compounds like drugs, hormones, etc to help tissue repair. XDS analysis of the calcium phosphate prepared revealed a calcium to phosphorus ratio of 2.30, which is significantly higher than that found in hydroxyapatite. Crystallisation of calcium phosphate within gelatin membrane also yielded a similar composition. The distribution of the mineral crystallised within the membrane was denser on the surface and this density diminished as the center is reached. SEM of the membrane also confirmed the presence of a surface with a different appearance than the interior.

Suggestions

Enhancement of mechanical properties of co-doped hydroxyapatite coatings on pre-treated Ti6Al4V
Hacıoğlu, Tuğçe; Evis, Zafer; Tezcaner, Ayşen (2017-10-27)
Titanium and its alloys are commonly preferred implant materials for hard tissue applications. Today more than 4.4 million people have an internal fixation device and over 1.3 million people possess an artificial joint. Not only is there high demand for orthopedic surgeries for new patients every year, but there is also an even higher demand for patients who must receive revision surgeries. In order to enhance the properties of titanium based implant materials, different pretreatment and coating techniques ...
Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release
Yaylaoglu, MB; Korkusuz, P; Ors, U; Korkusuz, F; Hasırcı, Vasıf Nejat (1999-04-01)
This study was carried out to develop a calcium phosphate-gelatin composite implant that would mimic the structure and function of bone for use in filling voids or gaps and to release bioactive compounds like drugs, growth hormones into the implant site to assist healing. XDS analysis of the synthesized calcium phosphate revealed a calcium to phosphorus molar ratio of ca. 2.30, implying a less erodible material than hydroxyapatite (1.67). Release of the antibiotic gentamicin from the implant was with a burs...
Core/shell type, Ce3+ and Tb3+ doped GdBO3 system: Synthesis and Celecoxib drug delivery application
Çolak, Pelin; Ulusan, Sinem; Banerjee, Sreeparna; Yılmaz, Ayşen (Elsevier BV, 2020-12-01)
In this study, luminescent and magnetic core/shell Gd1-x-yCexTbyBO3@SiO2 nanoparticles were synthesized and used to design a drug delivery system for Celecoxib (CLX). CLX was chosen as the model drug because it is a nonsteroidal anti-inflammatory drug that is highly hydrophobic with relatively low bioavailability. The core was synthesized by Pechini sol-gel method and silica coating was carried out by a Modified Stöber method. Drug loading was carried out in ethanol with high efficiency and an improved drug...
Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature
Oral, Çağatay M.; Çalışkan, Arda; Kapusuz, Derya; Ercan, Batur (Elsevier BV, 2020-09-01)
Hydroxyapatite (HAp, Ca-10(PO4)(6)(OH)(2)) particles are widely used in orthopedic applications due to their chemical resemblance to the inorganic component of bone tissue. Since physical and chemical properties of HAp particles influence bone regeneration, various synthesis techniques were developed to precisely control the particle properties. However, most of these techniques required high reaction temperatures, which limited the spectrum of obtained HAp particle morphologies. In this study, ellipsoidal,...
Calcium zirconium silicate (baghdadite) ceramic as a biomaterial
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (Elsevier BV, 2020-10-01)
Bioceramics have been widely used for many years to restore and replace hard tissues including bones, teeth and mineralized matrices such as calcified cartilages at osteochondral interfaces, mainly because of their physicochemical similarity with these tissues. Calcium silicate based bioceramics have been shown to possess high bioactivity due to having high apatite-forming ability and stimulating cell proliferation, as well as biodegradability at rates appropriate to hard tissue regeneration. The outstandin...
Citation Formats
M. Yaylaoglu, F. Korkusuz, and V. N. Hasırcı, “Gentamicin release from a hydroxyapatite - Gelatin composite,” 1997, vol. 16, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53960.