Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dielectric Characterization of Imatinib Resistant K562 Leukemia Cells through Electrorotation with 3-D Electrodes
Date
2013-11-06
Author
Bahrieh, G.
Koydemir, H. Ceylan
Erdem, Murat
Ozgur, E.
Gündüz, Ufuk
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
0
downloads
Cite This
This study reports the use of electrorotation (ER) technique within a micro-fabricated device with 3D electrodes for dielectric characterization of Imatinib-resistant K562 (K562/IMA-0.2) human leukemic cells. The ER devices with 3D quadruple electrodes (30 mu m in height) were used in order to eliminate the fringing field effect on the rotation of cells. To induce the rotational moment on the cells, signals in phase quadrature were applied to the triangular electrodes. The rotation of cells measured at the frequency range of 1 kHz to 0.1 MHz in various medium conductivities. The membrane effective conductance, membrane capacitance, and the inner conductivity of cells were measured as 2953 +/- 82 [Sm-2], 15.63 +/- 3.02 [mFm(-2)], and 0.60 +/- 0.10 [Sm-1], respectively. These results can be used in the designing and implementation of MEMS based DEP devices for separation and detection of imatinib resistant K562 cells.
Subject Keywords
Electrodes
,
Conductivity , Dielectrics , Erbium , Frequency measurement , Electric fields , Immune system
,
Conductivity
,
Dielectrics
,
Erbium
,
Frequency measurement
,
Electric fields
,
Immune system
URI
https://hdl.handle.net/11511/53984
Collections
Department of Biology, Conference / Seminar
Suggestions
OpenMETU
Core
Dielectric Analysis of Changes in Electric Properties of Doxorubicin Resistant K562 Leukemic Cells Through Electrorotation with 3 D Electrodes
Garsha, Bahrieh; Erdem, Murat; Özgür, Ebru; Gündüz, Ufuk; Külah, Haluk (2013-10-31)
In this study, dielectric characterization of multidrug resistant (MDR) K562 human leukemia cells was carried out using a MEMS-based electrorotation (ER) device with 3D electrodes. Different cell populations were utilized, which were resistant to 0.1, 0.3, and 0.5 μM doxorubicin. The ER devices with 3D quadruple electrodes (30 urn in height) were used, in order to eliminate the fringing field effect on the rotation of cells. Signals in phase quadrature were applied to the polynomial electrodes, to induce th...
Nanoscale Thermal Transport in Single, Bilayer Graphene, and Graphite
Gholivand, Hamed; Donmezer, Nazli (2016-10-12)
In this study, ab-initio calculations were performed to obtain phonon dispersions of single, bilayer graphene, and graphite structures. Using these dispersions single mode relaxation times, thermal conductivities, and mean free paths (MFPs) have been calculated. Finally, calculated variables were used to understand the effects of additional layers to thermophysical properties, phonon mode contributions to thermal conductivity, and the limits for ballistic-diffusive heat transfer of single, bilayer graphene,...
Magnetohydrodynamic flow imaging of ionic solutions using electrical current injection and MR phase measurements
Eroglu, Hasan H.; Sadighi, Mehdi; Eyüboğlu, Behçet Murat (Elsevier BV, 2019-06-01)
In this study, a method is proposed to image magnetohydrodynamic (MHD) flow of ionic solutions, which is caused by externally injected electrical current to an imaging media, during MRI scans. A multi-physics (MP) model is created by using the electrical current, laminar flow, and MR equations. The conventional spoiled gradient echo MRI pulse sequence with bipolar flow encoding gradients is utilized to encode the MHD flow. Using the MP model and the MRI pulse sequence, relationship between the MHD flow rela...
Electrical impedance tomography using the magnetic field generated by injected currents
Birgul, O; Ider, YZ (1996-11-03)
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savar...
Dielectrophoretic detection of imatinib resistance in K562 Cells Using A lab-on-a-chip system
Demircan Yalçın, Yağmur; Toral, Taylan Berkın; Sukaş, Serkan; Yıldırım, Ender; Zorlu, Özge; Gündüz, Ufuk; Külah, Haluk (Chemical and Biological Microsystems Society (CBMS); 2019-10-27)
This study presents label-free detection of imatinib resistance in K562 cells via integrated dielectrophoretic detection and impedimetric counting on a lab-on-a-chip system. Two impedimetric counting units were placed upstream and downstream of dielectrophoretic detection unit to obtain differential cell count and consequently the trapping ratio. The trapping ratio up to 57% was achieved for imatinib resistant (~60-fold) K562 cells, while it was minimized to 20% for wild type K562 cells
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bahrieh, H. C. Koydemir, M. Erdem, E. Ozgur, U. Gündüz, and H. Külah, “Dielectric Characterization of Imatinib Resistant K562 Leukemia Cells through Electrorotation with 3-D Electrodes,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53984.