Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determination of Reliabffity Based New Load and Resistance Factors for Reinforced Concrete Structural Members
Date
2014-07-01
Author
Firat, Fatih Kursat
Yücemen, Mehmet Semih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
In this study, a procedure for the determination of new load and resistance factors for reinforced concrete structural members is proposed in view of the fact that the design practice in Turkey has changed after the occurrence of major earthquakes. The implementation of the procedure is carried out for the shear failure mode of reinforced concrete beams subjected to dead and live load combination. First, the statistical parameters for the quantification of uncertainties involved in the design variables are assessed based on the available data. Then, the level of risk related with the current design practice is quantified in terms of the reliability index, beta. Target reliability index, beta(T), is selected in view of the beta values computed for the current design practice. By using the resulting target reliability index, beta(T), the load and resistance factors are computed based on the Advanced First Order Second Moment Method.
Subject Keywords
Reliability
,
Earthquake loadReinforced concrete beams; load and resistance factors; uncertainty; earthquake load;
,
Uncertainty
,
Load and resistance factors
,
Reinforced concrete beams
URI
https://hdl.handle.net/11511/54200
Journal
TEKNIK DERGI
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
HYSTERETIC RESPONSE OF REINFORCED-CONCRETE INFILLED FRAMES
ALTIN, S; ERSOY, U; TANKUT, T (1992-08-01)
Strengthening of framed reinforced concrete structures by cast-in-place reinforced concrete infills is commonly used in practice. The objective of this study is to investigate the behavior of such infilled frames under seismic loads. For this purpose, 14 two-story, one-bay infilled frames are tested under reversed cyclic loading simulating seismic action. The variables investigated are thc effect of type of infill reinforcement, thc connection between the frame and thc infill, and the flexural capacity of c...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Preliminary seismic performance assessment procedure for existing RC buildings
Yakut, Ahmet (2004-08-01)
A preliminary procedure to assess rapidly the likely seismic performance of existing reinforced concrete buildings is presented. In this procedure, a Capacity Index is computed considering the orientation, size and material properties of the components comprising the lateral load resisting structural system. This index is then modified by several coefficients that reflect the quality of workmanship and materials, and architectural features. The procedure has been tested and calibrated based on the data comp...
Modeling Beam-Column Joints in Fragility Assessment of Gravity Load Designed Reinforced Concrete Frames
Çelik, Ozan Cem (Informa UK Limited, 2008-3-14)
Reinforced concrete (RC) frame structures customarily have been designed in regions of low-to-moderate seismicity with little or no consideration of their seismic resistance. The move toward performance-based seismic engineering requires accurate reliability-based structural analysis models of gravity load designed (GLD) RC frames for predicting their behavior under seismic effects and for developing seismic fragilities that can be used as a basis for risk-informed decision-making. This analytical approach ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. K. Firat and M. S. Yücemen, “Determination of Reliabffity Based New Load and Resistance Factors for Reinforced Concrete Structural Members,”
TEKNIK DERGI
, pp. 6805–6829, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54200.