Strengthening of framed reinforced concrete structures by cast-in-place reinforced concrete infills is commonly used in practice. The objective of this study is to investigate the behavior of such infilled frames under seismic loads. For this purpose, 14 two-story, one-bay infilled frames are tested under reversed cyclic loading simulating seismic action. The variables investigated are thc effect of type of infill reinforcement, thc connection between the frame and thc infill, and the flexural capacity of columns. Test results are evaluated to estimate the effects of infill on stiffness, strength, energy dissipation, lateral drift, and ductility. The feasibility of different analytical methods is also investigated. The results obtained using such analytical methods are compared with the experimental observations. Using the test results. a simple dynamic evaluation is made to predict the dynamic behavior of infilled frames under seismic action.


Vulnerability assessment of reinforced concrete moment resisting frame buildings
Erduran, Emrah; Yakut, Ahmet (2007-04-01)
A detailed seismic performance assessment procedure has been developed for reinforced concrete (RC) frame buildings with masonry infill walls. The procedure is based on member damage functions, in terms of interstory drift ratios. These functions are developed for the primary components, namely, columns, beams, and infill walls. For developing these functions, analytical investigations to determine the influence of several parameters on the damageability of components were combined with experimental data. A...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
Nonlinear analysis of reinforced concrete frame structures
Çiftçi, Güçlü Koray; Polat, Mustafa Uğur; Department of Civil Engineering (2013)
Reinforced concrete frames display nonlinear behavior both due to its composite nature and the material properties of concrete itself. The yielding of the reinforcement, the non-uniform distribution of aggregates and the development of cracks under loading are the main reasons of nonlinearity. The stiffness of a frame element depends on the combination of the modulus of elasticity and the geometric properties of its section - area and the moment of inertia. In practice, the elastic modulus is assumed to be ...
Influence of ground motion intensity on the performance of low- and mid-rise ordinary concrete buildings
Akkar, S; Sucuoğlu, Haluk; Yakut, Ahmet (2004-05-21)
Fragility functions are determined for low- and mid-rise ordinary concrete buildings. A hybrid approach is employed where building capacities are obtained from field data and their dynamic responses are calculated by response history analysis. Lateral stiffness, strength and deformation capacities of the sample buildings are determined by pushover analyses. Uncertainties in lateral stiffness, strength and damage limit states are expressed by using statistical distributions. The seismic deformation demands o...
Citation Formats
S. ALTIN, U. ERSOY, and T. TANKUT, “HYSTERETIC RESPONSE OF REINFORCED-CONCRETE INFILLED FRAMES,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 2133–2150, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66890.