Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Anomaly Detection in Trajectories
Date
2016-05-19
Author
Ergezer, Hamza
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
37
views
0
downloads
Cite This
In this work, we study the problem of anomaly detection of the trajectories of objects in a visual scene. For this purpose, we propose a novel representation for trajectories utilizing covariance features. Representing trajectories via covariance features enables us to calculate the distance between the trajectories of different lengths. After setting this proposed representation and calculation of distances, anomaly detection is achieved by sparse representations on nearest neighbours. Conducted experiments on both synthetic and real datasets show that the proposed method yields results which are outperforming or comparable with state of the art.
Subject Keywords
Covariance feature
,
Trajectory representation
,
Anomaly detection
URI
https://hdl.handle.net/11511/54253
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Anomaly Detection and Activity Perception Using Covariance Descriptor for Trajectories
Ergezer, Hamza; Leblebicioğlu, Mehmet Kemal (2016-10-16)
In this work, we study the problems of anomaly detection and activity perception through the trajectories of objects in crowded scenes. For this purpose, we propose a novel representation for trajectories via covariance features. Representing trajectories via feature covariance matrices enables us to calculate the distance between the trajectories of different lengths. After setting this proposed representation and calculation of distances between trajectories, anomaly detection is achieved by sparse repres...
Abnormal Crowd Behavior Detection Using Novel Optical Flow-Based Features
Direkoglu, Cem; Sah, Melike; O'Connor, Noel E. (2017-09-01)
In this paper, we propose a novel optical flow based features for abnormal crowd behaviour detection. The proposed feature is mainly based on the angle difference computed between the optical flow vectors in the current frame and in the previous frame at each pixel location. The angle difference information is also combined with the optical flow magnitude to produce new, effective and direction invariant event features. A one-class SVM is utilized to learn normal crowd behavior. If a test sample deviates si...
Hyperspectral Anomaly Detection Method Based on Auto-encoder
Bati, Emrecan; Caliskan, Akin; Koz, Alper; Alatan, Abdullah Aydın (2015-09-23)
A major drawback of most of the existing hyperspectral anomaly detection methods is the lack of an efficient background representation, which can successfully adapt to the varying complexity of hyperspectral images. In this paper, we propose a novel anomaly detection method which represents the hyperspectral scenes of different complexity with the state-of-the-art representation learning method, namely auto-encoder. The proposed method first encodes the spectral image into a sparse code, then decodes the co...
Parameter extraction and image enhancement for catadioptric omnidirectional cameras
Baştanlar, Yalın; Çetin, Yasemin; Department of Information Systems (2005)
In this thesis, catadioptric omnidirectional imaging systems are analyzed in detail. Omnidirectional image (ODI) formation characteristics of different camera-mirror configurations are examined and geometrical relations for panoramic and perspective image generation with common mirror types are summarized. A method is developed to determine the unknown parameters of a hyperboloidal-mirrored system using the world coordinates of a set of points and their corresponding image points on the ODI. A linear relati...
Gray Level Topological Angle Detection of High Curvature Points
Cihan, Ibrahim Kivanc; ŞENEL, HAKAN GÜRAY (2010-07-07)
A new method of angle detection based on the topological median filter is proposed. Topological opening operator is used to detect corners and Topological closing operator is used to calculate the corner angles on gray level images.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ergezer and M. K. Leblebicioğlu, “Anomaly Detection in Trajectories,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54253.