Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Novel Characterization Method for MEMS Based Electrostatic Resonators for Q Enhancement and Feedthrough Current Elimination
Date
2016-11-03
Author
AYDIN GÖL, EBRU
Kangul, M.
Gökce, Fuat
Zorlu, O.
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
This paper introduces a new technique for electrostatic resonance characterization based on 2nd harmonic distortion terms at the output current. Mathematical analysis of the output current shows that the 2nd harmonic component exhibits higher quality factor (Q) than the 1st harmonic. Besides, output current to feedthrough current ratio is higher in the 2nd harmonic term. Experimental results show that the Q of the resonating system is enhanced by 66% with 2nd harmonic operation. Moreover, the resonance peak has been improved from 0.2 dB to 5dB, showing the effective increase in output current to the feedthrough ratio.
Subject Keywords
Feedthrough current cancellation
,
Quality factor enhancement
,
Nonlinearity
,
Distortion
,
2nd harmonic
,
MEMS
,
Resonator
URI
https://hdl.handle.net/11511/54439
Collections
Department of Architecture, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors
Kangul, Mustafa; Aydin, Eren; Gokce, Furkan; Zorlu, Ozge; Külah, Haluk (2017-12-01)
This paper presents the investigation of two different capacitive feedthrough current elimination methods with an analysis of the effect of the capacitive feedthrough current on the resonance characteristics of electrostatically actuated and sensed resonant MEMS sensors. Electrostatically actuated and sensed resonators have various applications, such as accelerometers, gyroscopes, mass sensors, and temperature sensors. In most of these applications, as sensitivity increases, gain decreases. The capacitive f...
A High Performance PWM Algorithm for Common Mode Voltage Reduction in Three-phase Voltage Source Inverters
Uen, Emre; Hava, Ahmet Masum (2008-06-19)
A high performance PWM algorithm with reduced common mode voltage (CMV) and satisfactory overall performance is proposed for three-phase PWM inverter drives. The algorithm combines the near state PWM (NSPWM) method which has superior overall performance characteristics at high modulation index and MAZSPWM, a modified form of the active zero state PWM method (AZSPWM1), which is suitable for low modulation index range of operation. Since AZSPWM1 has line-to-line voltage pulse reversals with small zero-voltage...
An array of square plate resonators with adjustable resonance frequency
Polat, Halim; Azgın, Kıvanç; Department of Mechanical Engineering (2022-8-19)
In this study, a MEMS square plate resonator with adjustable resonance frequency is designed, mathematically modelled and verified with finite element analysis (FEA) and experiments. Resonance frequency of microelectromechanical system (MEMS) square plate is adjusted with the help of several cutouts which are placed in unique lines like center lines and nodal lines. First of all, plates are modelled with the help of semi-analytic method called Rayleigh-Ritz method for the 1st and 2nd modes since higher mode...
A Novel Numerical Technique for Analyzing Metasurfaces
ÖZGÜN, ÖZLEM; Mittra, Raj; Kuzuoğlu, Mustafa (2019-12-31)
This work presents a novel technique for efficient numerical modeling of electromagnetic scattering from metasurfaces comprising of truncated periodic or locally-varying quasi-periodic surfaces. The proposed technique hybridizes the periodic Finite Element Method (FEM) with the Method of Moments (MoM) to develop an algorithm far more efficient than conventional numerical methods for electromagnetic scattering from arbitrary objects. The key feature of the proposed algorithm is that it takes advantage of the...
A unity power factor buck type PWM rectifier for medium/high power DC motor drive applications
Bilgin, HF; Kose, KN; Zenginobuz, G; Ermiş, Muammer; Nalcaci, E; Cadirci, I; Kose, H (2000-10-04)
This paper describes the application of a single stage unity pf buck type PWM rectifier to medium and high power variable speed dc motor drives. The advantages of the developed system are low harmonic distortion in ac supply currents (comply with IEEE Std. 519 and IEC 555), nearly unity pf over a wide operating shaft speed range, nearly level armature -current and -voltage waveforms. These properties of output voltage and current quantities of the converter eliminate entirely any failure risk in current com...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. AYDIN GÖL, M. Kangul, F. Gökce, O. Zorlu, and H. Külah, “A Novel Characterization Method for MEMS Based Electrostatic Resonators for Q Enhancement and Feedthrough Current Elimination,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54439.