DELAY ESTIMATION BASED ON KINEMATIC TRACK INFORMATION WITHOUT TIME STAMPS

2014-04-25
Ozgen, Selim
Sarıtaş, Elif
Orguner, Umut
Acar, Duygu
An algorithm to estimate the delay between two track files without time stamps in a distributed track fusion architecture is proposed. The main aim in delay estimation is to make the proceeding track fusion more accurately. The performance of the proposed algorithm is illustrated on an example in which two radars observe a common surveillance area with one radar sending the track information with a deterministic delay. Moreover, a method is proposed if the delay estimation algorithm presents a bad performance under deterministic delay assumption.

Suggestions

Delay and Peak-Age Violation Probability in Short-Packet Transmissions
Devassy, Rahul; Durisi, Giuseppe; Ferrante, Guido Carlo; Simeone, Osvaldo; Uysal, Elif (2018-06-22)
This paper investigates the distribution of delay and peak age of information in a communication system where packets, generated according to an independent and identically distributed Bernoulli process, are placed in a single-server queue with first-come first-served discipline and transmitted over an additive white Gaussian noise (AWGN) channel. When a packet is correctly decoded, the sender receives an instantaneous error-free positive acknowledgment, upon which it removes the packet from the buffer. In ...
Distributed Target Tracking with Propagation Delayed Measurements
Orguner, Umut (2009-07-09)
This paper presents a framework for making distributed target tracking under significant signal propagation delays between the target and the sensors. Each sensor considered makes estimation using its own measurements compensating for the involved signal propagation delay using a deterministic sampling based algorithm proposed previously. Since the individual sensor readings might not be enough to localize the target, the sensors have to share their estimates with each other at specific time instants and co...
Attitude estimation and magnetometer calibration using reconfigurable TRIAD plus filtering approach
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper proposes using TRIAD and Unscented Kalman Filter (UKF) algorithms in a sequential architecture as a part of a small satellite attitude estimation algorithm. This TRIAD+UKF approach can both provide accurate attitude estimates for the satellite and calibrate the magnetometers in real-time. A complete calibration model for the magnetometers, considering bias, scale factor, soft iron and nonorthogonality errors, is assumed. In the algorithm's first stage, the TRIAD uses the available vector measurem...
Vector tracking loop design for GPS receivers
Üzel, Deniz; Baykal, Buyurman; Department of Electrical and Electronics Engineering (2016)
This study describes the design of a modern GPS receiver architecture based on vector tracking loops. Since the traditional tracking loops process the signals independently, there is no information exchange between channels. Due to that fact, aiding of weaker signals in the presence of relatively strong signals is impossible. On the other hand, vector tracking loops simultaneously process the signals from all visible channels. Therefore, they are able to perform better than the traditional tracking loops in...
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
Citation Formats
S. Ozgen, E. Sarıtaş, U. Orguner, and D. Acar, “DELAY ESTIMATION BASED ON KINEMATIC TRACK INFORMATION WITHOUT TIME STAMPS,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54625.