Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm
Date
2007-09-02
Author
DEĞİRMENCİ, EVREN
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging technique which combines boundary potential measurements of electrical impedance tomography (EIT) and internal current density distribution obtained from magnetic resonance imaging (MRI) to produce conductivity images having high spatial resolution and accuracy. In this study, a novel method of reconstructing images of anisotropic conductivity tensor distribution inside an electrically conducting subject is proposed for MREIT. The technique is evaluated on simulated data obtained from a model having anisotropic and isotropic conductivity distributions. Noise performance of the algorithm is also evaluated.
Subject Keywords
Magnetic resonance imaging
,
Impedance tomography
,
Anisotropic conductivity
,
Reconstruction
URI
https://hdl.handle.net/11511/54779
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Anisotropic Conductivity Imaging with MREIT Using J-substitution and Hybrid J-substitution Algorithms
Degirmenci, E.; Eyüboğlu, Behçet Murat (2009-09-12)
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a tomographical imaging technique which uses measurements of magnetic flux density induced by a probing current to reconstruct electrical conductivity distribution within a conductor object with magnetic resonance active nuclei. In this study, two novel anisotropic conductivity reconstruction algorithms for MREIT are proposed. The technique is evaluated with simulated measurements.
Equipotential projection based MREIT reconstruction without potential measurements
Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is used to produce high resolution images of true conductivitv distribution. Images are reconstructed by utilising measurements of magnetic flux density distribution and surface potentials. Surface potential measurements are needed to reconstruct true conductivity values. In this study, a novel MREIT reconstruction algorithm is developed to generate conductivity images without utilizing the surface potential measurements. The proposed algorithm and ...
Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging
Degirmenci, E.; Eyüboğlu, Behçet Murat (2008-11-27)
Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm i...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (IOP Publishing, 2007-12-21)
Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. DEĞİRMENCİ and B. M. Eyüboğlu, “Anisotropic conductivity imaging with MREIT using equipotential projection algorithm,” 2007, vol. 17, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54779.