Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Controlled assemble and microfabrication of zeolite particles on SiO2 substrates for potential biosensor applications
Date
2008-12-04
Author
Öztürk, Semra
Turan, Raşit
Akata Kurç, Burcu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
291
views
0
downloads
Cite This
Zeolite nanoparticles were organized into functional entities on SiO2 substrates and microfabrication technique was tested to form patterns of zeolite nanoparticles on SiO2 using the electron beam lithography (EBL). The effect of different techniques for efficient zeolite assembly on the SiO2 substrates was investigated. For this purpose, three different assembly techniques were tested. The first two methods are spin-coating (SC) and ultrasound aided strong agitation (US) methods, which were tested using bare and silanized zeolite nanoparticles. The third technique is the manual assembly method, which was also investigated using bare zeolites. All methods were facile in terms of experimental approach. Full coverage of the substrate was obtained after all three methods, however strong agitation (US) leads to better organization of zeolite nanoparticles. Among all techniques, manual assembly method lead to the most organized zeolite nanoparticles with full coverage. Although strong agitation (US) also results in organized zeolite entities, it was not found to be a suitable technique for EBL studies. Using the manual assembly method, it was possible to form monolayers of zeolite natioparticles on SiO2 and to make patterns of zeolite nanoparticles by EBL, which offers a simple technique to engineer the surfaces for immobilization of biomolecules.
Subject Keywords
Monolayers
URI
https://hdl.handle.net/11511/54792
Conference Name
Symposium on Materials, Devices, and Characterization for Smart Systems held at the 2008 MRS Fall Meeting
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Angle of graph energy - A spectral measure of resemblance of isomeric molecules
Gutman, I; Türker, Burhan Lemi (2003-11-01)
A method, elaborated earlier by one of the present authors, for measuring the structural resemblance of isomeric alternant conjugated hydrocarbons, based on a graph-spectral quantity theta, called the angle of total pi-electron energy approach has been extended now to arbitrary molecules. Some general properties of theta have been established.
Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix
Soydas, Ozan; Sarıtaş, Afşin (2017-09-01)
In this analytical study, free vibration analyses of a 3d mixed formulation beam element are performed by adopting force-based consistent mass matrix that incorporates shear and rotary inertia effects. The force-based approach takes into account the actual distribution of mass of an element in the derivation of the mass matrix. Moreover, the force-based approach enables accurate determination of free vibration frequencies of members with varying geometry and material distribution without any need for specif...
Immobilization of invertase in conducting polymer matrices
Selampinar, F; Akbulut, Ural; Ozden, MY; Toppare, Levent Kamil (1997-09-01)
This paper reports a novel approach in the electrode immobilization of an enzyme, invertase, by electrochemical polymerization of pyrrole in the presence of enzyme. The polypyrrole/invertase and polyamide/polypyrrole/invertase electrodes were constructed by the entrapment of enzyme in conducting matrices during electrochemical polymerization of pyrrole. This study involves the preparation and characterization of polypyrrole/invertase and polyamide/polypyrrole/invertase electrodes under conditions compatible...
Development of alumina supported ternary mixed matrix membranes for separation of H-2/light-alkane mixtures
Topuz, Berna; Yılmaz, Levent; Kalıpçılar, Halil (2012-10-01)
Ternary component mixed matrix membrane was prepared from PES, SAPO-34 and 2-hydroxy 5-methyl aniline on a macroporous alumina disk by the solvent evaporation method in order to investigate the effect of existence of an inorganic support. The membrane and its pure PES/Alumina counterpart were characterized by single gas permeability measurements of H-2, CH4, C2H6 and C3H8. The corresponding H-2/CH4 selectivities of membranes were 71.3 and 41. The membranes were also used to separate equimolar mixtures of H-...
Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals
Mahmoudian, Mehdi; Ghasemıkouchameshgı, Mahmoud; Hosseinzadeh, Mohammadtaghi (2018-04-01)
Incorporation of hydrophilic multifunctional compounds in to the polymeric membrane's matrix is one of the useful methods for modification of mixed matrix membranes. Therefore, in this study, preparation and properties of polyethersulfone (PES) mixed matrix membranes with hydrolyzed polymethylmethacrylate (PMMA(hyd)) grafted on graphene oxide (GO-PMMA(hyd)) is investigated as an effective additive to improve permeability and antifouling properties. In this respect, grafting of PMMA(hyd) on the GO surface is...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Öztürk, R. Turan, and B. Akata Kurç, “Controlled assemble and microfabrication of zeolite particles on SiO2 substrates for potential biosensor applications,” Boston, MA, 2008, vol. 1129, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54792.