Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals
Date
2018-04-01
Author
Mahmoudian, Mehdi
Ghasemıkouchameshgı, Mahmoud
Hosseinzadeh, Mohammadtaghi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
Incorporation of hydrophilic multifunctional compounds in to the polymeric membrane's matrix is one of the useful methods for modification of mixed matrix membranes. Therefore, in this study, preparation and properties of polyethersulfone (PES) mixed matrix membranes with hydrolyzed polymethylmethacrylate (PMMA(hyd)) grafted on graphene oxide (GO-PMMA(hyd)) is investigated as an effective additive to improve permeability and antifouling properties. In this respect, grafting of PMMA(hyd) on the GO surface is done by atom transfer radical polymerization (ATRP) technique and confirm by FTIR, H NMR, EDAX and thermogravimetric analysis (TGA). During membrane formation, the membrane surface porosity improves and the hydrophilic GO-PMMA(hyd) nanoparticles tend to migrate toward the membrane top surfaces which confirms by FE-SEM cross-section images. Moreover, contact angle measurements show that the surface hydrophilicity enhanced after introducing GO-PMMA(hyd). More importantly, prepared nanocomposite membranes show excellent performance in the separation of salts, dyes and heavy metal ions. Furthermore, it can be expected that by creating acid groups on graphene oxide plates, prepared mixed matrix membranes were pH-sensitive, so this claim is examined and proved in membranes.
Subject Keywords
Mixed matrix membranes
,
ATRP polymerization
,
Functionalized graphene oxide
,
Antifouling
URI
https://hdl.handle.net/11511/90419
Journal
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
DOI
https://doi.org/10.1016/j.jece.2018.04.056
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Development of alumina supported ternary mixed matrix membranes for separation of H-2/light-alkane mixtures
Topuz, Berna; Yılmaz, Levent; Kalıpçılar, Halil (2012-10-01)
Ternary component mixed matrix membrane was prepared from PES, SAPO-34 and 2-hydroxy 5-methyl aniline on a macroporous alumina disk by the solvent evaporation method in order to investigate the effect of existence of an inorganic support. The membrane and its pure PES/Alumina counterpart were characterized by single gas permeability measurements of H-2, CH4, C2H6 and C3H8. The corresponding H-2/CH4 selectivities of membranes were 71.3 and 41. The membranes were also used to separate equimolar mixtures of H-...
Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated RAFT as a pH-responsive additive for mixed matrix membrane
Ghasemi Kochameshki, Mahmoud; Mahmoudian, Mehdi; Marjani, Azam; Farhadi, Khalil; Enayati, Mojtaba; Mollayousefi, Hamed Samadi (2019-03-01)
Incorporation of nanostructured materials into the membrane matrix is a new strategy to improve mechanical and performance properties. Graphene oxide (GO) is one of the advantageous carbon-based nanomaterials, which recently has been used extensively in this field. However, in the most cases, the surface modification of GO has been considered for the creation of new properties like a response to different stimuli such as temperature, pH, and pressure. In the present study, a well-defined poly(acrylic acid) ...
Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes
SEN, Deger; Kalıpçılar, Halil; Yılmaz, Levent (2007-10-15)
The incorporation of fillers, blending with multifunctional low molecular-weight additives and their combination are investigated as alternatives for modifying the permselective properties of polymeric gas separation membranes. For this purpose, pure polycarbonate (PC), PC/p-nitroaniline (pNA), PC/zeolite 4A and PC/pNA/zeolite 4A mixed matrix membranes were prepared by solvent-evaporation method using dichloromethane as solvent. Zeolite 4A was the filler and pNA was the low molecular-weight additive with mu...
Controlled assemble and microfabrication of zeolite particles on SiO2 substrates for potential biosensor applications
Öztürk, Semra; Turan, Raşit; Akata Kurç, Burcu (2008-12-04)
Zeolite nanoparticles were organized into functional entities on SiO2 substrates and microfabrication technique was tested to form patterns of zeolite nanoparticles on SiO2 using the electron beam lithography (EBL). The effect of different techniques for efficient zeolite assembly on the SiO2 substrates was investigated. For this purpose, three different assembly techniques were tested. The first two methods are spin-coating (SC) and ultrasound aided strong agitation (US) methods, which were tested using ba...
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matri...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Mahmoudian, M. Ghasemıkouchameshgı, and M. Hosseinzadeh, “Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals,”
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
, pp. 3122–3134, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90419.