Imaging electrical current density using 0.15T Magnetic Resonance Imaging system

2001-10-28
Ozbek, O
Birgul, O
Eyüboğlu, Behçet Murat
Ider, YZ
In this study, imaging of electrical current density in conducting objects, which contain nuclear magnetic resonance (NMR) active nuclei is planned using 0.15T Magnetic Resonance Imaging (MRI) system. Current to be imaged is externally applied to the object in synchrony with a standard spin-echo pulse sequence. Applied current is a bipolar DC current pulse, which creates a DC current density at each cycle within the object. The applied current pulse creates a measurable magnetic flux density. The component of magnetic flux density parallel to the main magnetic field accumulates an additional phase in the phase of the complex MR image. Magnetic flux density can be extracted using two phase images acquired with and without the current pulse. Measurement of all three components of magnetic flux density makes the reconstruction of current density possible with a spatial resolution equal to the half of the MR resolution. Experiments performed on several phantoms and the results are presented.
23rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society

Suggestions

Realization of magnetic resonance current density imaging at 3 Tesla,
Göksu, Cihan; SADIGHI, MEHDI; Eyüboğlu, Behçet Murat (2014-08-26)
Magnetic Resonance Current Density Imaging (MRCDI) is an imaging modality, which reconstructs electrical current density distribution inside a material by using Magnetic Resonance Imaging (MRI) techniques. In this study, a current source with maximum current injection capability of 224.7mA, under 1k Omega resistive load is used. Experiments are performed with a 2D uniform phantom, in which a current steering insulator is inserted. Magnetic flux density distributions are measured, and current density images ...
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
Magnetohydrodynamic Flow Imaging Using Spin-Echo Pulse Sequence
Eroğlu, Hasan Hüseyin; SADIGHI, MEHDI; Eyüboğlu, Behçet Murat (2019-04-24)
In this study, magnetohydrodynamic (MHD) flow of conductive liquids due to injection of electrical current during magnetic resonance imaging (MRI) is investigated. A spin-echo based MRI pulse sequence is proposed to image the MHD flow. Magnetic resonance (MR) phase effects of the MHD flow is related to the MRI pulse parameters and injected current. Average velocity distributions of the MHD flow are reconstructed using the MR phase images. The method is validated by numerical simulations. The reconstruction ...
Measurement of AC magnetic field distribution using magnetic resonance imaging
Ider, YZ; Muftuler, LT (1997-10-01)
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system, A pulse sequence that is originally design...
Experimental and mathematical investigation of mass transfer in food andhydrogel systems using magnetic resonance imaging and NMR relaxometry
Çıkrıkcı, Sevil; Öztop, Halil Mecit; Department of Food Engineering (2019)
Nuclear magnetic resonance (NMR) and Magnetic Resonance Imaging (MRI) are well-known non-invasive characterization methods used in a wide range of areas; from medical to food applications. NMR experiments are conducted either through spectroscopy with high resolution systems or with relaxometery (Time Domain NMR) through mid or low field systems. Time domain NMR is primarily based on relaxation times and diffusion measurements from the signal coming from the whole sample while MRI enables to visualize the i...
Citation Formats
O. Ozbek, O. Birgul, B. M. Eyüboğlu, and Y. Ider, “Imaging electrical current density using 0.15T Magnetic Resonance Imaging system,” ISTANBUL, TURKEY, 2001, vol. 23, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55902.