Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Protease secretion capacity and perforce analysis of recombinant Bacillus species
Date
2000-10-08
Author
Çalık, Pınar
Kalender, N
Ozdamar, TH
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Recombinant Bacillus species carrying subC gene encoding serine alkaline protease (SAP) enzyme were developed in order to increase the yield and selectivity in the bioprocess for SAP production. subC gene was amplified from the chromosomal DNA of the wild-type Bacillus licheniformis by using PCR technology; thereafter, subC gene was first cloned into the pRS316 E. coli yeast shuttle plasmid, then sub-cloned into the pHV1431 E. coli-Bacillus shuttle vector, and transferred to the host Bacillus species, i.e. Bacillus licheniformis, Bacillus alvei, Bacillus firmus, Bacillus cereus, Bacillus subtilis, Bacillus badius, Bacillus sphaericus and Bacillus coagulans. pHV1431::subC was transferred to B. licheniformis and B. coagulans by electroporation, and to the other six hosts by free-transformation. Bioreactor experiments were conducted with the wild-type and recombinant Bacillus species in order to compare their production potentials. By cloning the pHV1431::subC, SAP activity increased, 2-fold in r-B. licheniformis, 26- fold in r-B. alvei, 71- fold in r-B. badius, 51- fold in r-B. cereus, 32- fold in r-B. firmus, 33- fold in r-B. subtilis, 105- fold in r-B. sphaericus and 14- fold in r-B. coagulans, in a defined medium with glucose as the sole carbon source at t=43 h of the fermentations. Physiological differences and similarities between the wild-type and recombinant Bacillus species are discussed.
Subject Keywords
Recombinant Bacillus
,
SubC
,
Serine alkaline protease
,
Physiology
,
Production
URI
https://hdl.handle.net/11511/55939
Collections
Department of Chemical Engineering, Conference / Seminar