Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of sensitive analytical methods for the determination of thallium at trace levels by slotted quartz tube flame atomic absorption spectrometry
Date
2020-09-01
Author
Ari, Betul
BAKIRDERE, Sezgin
Ataman, Osman Yavuz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
317
views
0
downloads
Cite This
A simple, sensitive and economical technique is needed for the determination of thallium and this study demonstrates the different analytical strategies were developed using atomic absorption spectrometry (AAS). In order to improve the sensitivity of flame atomic absorption spectrometry (FAAS), a basic slotted quartz tube (SQT) was used for the thallium determination. In the first strategy, mixing propanol (100 mu L) and Tl standard solution (500 mu L) under the optimum conditions, namely solvent assisted SQT-FAAS, provided 4.49 folds enhancement in detection power with the help of better nebulization efficiency and/or atomization of analytes. Furthermore, SQT was used as an atom trap, AT as the second strategy. In this method, analyte atoms were trapped for 5.0 min on the SQT inner surface under the lean flame. In addition, a novel analytical method was developed using an inner surface coated SQT with metals with low volatility (palladium, tungsten, molybdenum, zirconium, tantalum, osmium and titanium). Under the all optimum conditions, limit of detection values were found to be 38 ng(-1) and 3.5 ng(-1) for SQT-AT-FAAS and Os-Coated-SQT-AT-FAAS methods, respectively. 319 folds improvement in detection power was obtained by Os-Coated-SQT-AT-FAAS method with respect to conventional FAAS.
Subject Keywords
Instrumentation
,
Analytical Chemistry
,
Spectroscopy
,
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/56283
Journal
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
DOI
https://doi.org/10.1016/j.sab.2020.105937
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Analysis of the Raman intensities near the phase transitions in ammonium halides
Yurtseven, Hasan Hamit (Elsevier BV, 2008-12-01)
This study concentrates on the temperature dependence of the Raman intensities for the lattice modes in ammonium halides (NH4Cl and NH4Br) close to phase transitions, We predict their intensities using the results of a shell model for the Raman polarizability within the framework of an Ising pseudospin-phonon coupled model.
Optimization of ETV-ICP(TOF)MS and transient signal profiles for reducing isobaric interferences
Ertaş, Gülay (Royal Society of Chemistry (RSC), 2005-01-01)
One of the advantages of the ETV sample introduction is the ability to temporally separate analyte elements in complex mixtures by differences in their vaporization temperatures within the ETV for ICPMS. However, the broadening of the transient peaks in the transport tubing often obscures this temporal resolution. This study shows that decreasing the transport tubing diameter produces little broadening beyond that produced during aerosol production in the ETV. Maintaining such narrow peaks through the trans...
Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances
Boyacı, Ezel; Rodriguez-Lafuente, Angel; Bojko, Barbara; Pawliszyn, Janusz (Elsevier BV, 2014-01-27)
A fully automated, high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography-mass spectrometry was developed for simultaneous quantitative analysis of 110 doping compounds, selected from ten classes and varying in physical and chemical properties. Among four tested extraction phases, C18 blades were chosen, as they provided optimum recoveries and the lowest carryover effect. The SPME method was optimized in terms of extraction pH, ionic strength of the sample, wa...
Quantum chemical studies on some seleanaphthalene derivatives
Türker, Burhan Lemi (Elsevier BV, 2005-04-01)
Quantum chemical studies on certain selenanaphthalene derivatives (having a keto or enol group and also Se atom in five- or six-membered ring system fused with naphthalene moiety) have been carried out using PM3 method at the level of restricted Hartree-Fock approach. The aquated systems have also been considered.
Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies
Bilge, Duygu; ŞAHİN, İPEK; KAZANCI, NADİDE; Severcan, Feride (Elsevier BV, 2014-09-15)
Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disord...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ari, S. BAKIRDERE, and O. Y. Ataman, “Development of sensitive analytical methods for the determination of thallium at trace levels by slotted quartz tube flame atomic absorption spectrometry,”
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56283.