Synthesis of Monitoring Rules with STL

2020-09-01
Aydin, Sertac Kagan
Aydın Göl, Ebru
Online monitoring is essential to enhance the reliability for various systems including cyber-physical systems and Web services. During online monitoring, the system traces are checked against monitoring rules in real time to detect deviations from normal behaviors. In general, the rules are defined as boundary conditions by the experts of the monitored system. This work studies the problem of synthesizing online monitoring rules in the form of temporal logic formulas in an automated way. The monitoring rules are described as past-time signal temporal logic (ptSTL) formulas and an algorithm to synthesize such formulas from a given set of labeled system traces is proposed. The algorithm searches the formula space using genetic algorithms and produces the best formula representing a monitoring rule. In addition, online STL monitoring algorithm is improved to efficiently compute a quantitative valuation for piecewise-constant signals from ptSTL formulas, thus, to reduce the overhead of the real-time computation. The effectiveness of the results is shown on two illustrative examples inspired from online monitoring of Web services.
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS

Suggestions

Methodology for performance analysis of randomly-spread CDMA systems over multipath fading channels via crosscorrelation matrix non-asymptotic average eigenvalue densities
Ertug, O; Baykal, Buyurman; Unal, BS (Institution of Engineering and Technology (IET), 2003-08-07)
A new methodology for closed-form theoretical performance analysis of randomly-spread CDMA systems over multipath fading channels with multiuser receivers is presented. The basis of the analysis is the representation of the random signal to interference ratios at finite system parameters in terms of the eigenvalues of crosscorrelation matrices for which the non-asymptotic average densities are found or known, The methodology presented complements the asymptotic Ruining theory used in similar previous work o...
Distributed restoration in optical networks using feed-forward neural networks
Karpat, Demeter Gokisik; Bilgen, Semih (Springer Science and Business Media LLC, 2006-07-01)
A new method is proposed for determining protection paths in an optical network where users have different characteristics in terms of reliability needs and security restrictions. Survivability is achieved by distributed mesh protection. Over the preplanned primary and backup capacity, optimal routing and wavelength assignment is carried out. In case of a network failure, protection routes and optimum flow values on these protection routes are extracted from a previously trained feed-forward neural network ...
EACF: extensible access control framework for cloud environments
Mehak, Faria; Masood, Rahat; Shibli, Muhammad Awais; Elgedway, Islam (Springer Science and Business Media LLC, 2017-06-01)
The dynamic authorization and continuous monitoring of resource usage in cloud environments is a challenge. Moreover, the extant access control techniques are not well-suited for all types of the cloud-hosted applications predominantly for two reasons. Firstly, these techniques lack in providing features such as generality, extensibility, and flexibility. Secondly, they are static in nature, such that once the user is authorized, they do not evaluate the access request during and after the resource usage. E...
Collaborative mobile target imaging in ultra-wideband wireless radar sensor networks
Arık, Muharrem; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2008)
Wireless sensor networks (WSN) have thus far been used for detection and tracking of static and mobile targets for surveillance and security applications. However, detection and tracking do not suffice for a complete satisfaction of these applications and an accurate target classification. To address this need, among various target classification methods, imaging of target yields the most valuable information. Nevertheless, imaging of mobile targets moving over an area requires networked and collaborative d...
A Computational Dynamic Trust Model for User Authorization
ZHONG, Yuhui; Bhargava, Bharat; LU, Yİ; Angın, Pelin (Institute of Electrical and Electronics Engineers (IEEE), 2015-01-01)
Development of authorization mechanisms for secure information access by a large community of users in an open environment is an important problem in the ever-growing Internet world. In this paper we propose a computational dynamic trust model for user authorization, rooted in findings from social science. Unlike most existing computational trust models, this model distinguishes trusting belief in integrity from that in competence in different contexts and accounts for subjectivity in the evaluation of a pa...
Citation Formats
S. K. Aydin and E. Aydın Göl, “Synthesis of Monitoring Rules with STL,” JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56626.