Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal and mechanical properties of microwave- and heat-cured poly(methyl methacrylate) used as dental base material
Date
2003-10-03
Author
Usanmaz, Ali
Ates, J
Dogan, A
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
The thermal and mechanical properties of dental base materials cured by microwave and conventional heat methods were studied. The commercial dental base poly(methvl metacrylate) (PMMA) powder and liquid were mixed in a 3/1 ratio. They were polymerized by a peroxy catalyst at 63degreesC, then cured with a boiling water temperature and microwave radiation for periods of 5, 10, 15, 20, 25, 30, and 35 min for heat curing and 1, 2, 3, 5, and 7 min for microwave radiation. The microwave radiation outputs used were 500 and 700 W. The products of 5-min heat curing and 1-, 2-, and 7-min microwave curing were soluble in chloroform. All the others were partially soluble. The viscosity-average molecular weights of the soluble samples were about 1 x 10(6). The thermal properties of the polymer samples were studied by differential scanning calorimetry
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Surfaces, Coatings and Films
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/57798
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.12681
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants
Selim, K; Özkar, Saim; Yılmaz, Levent (Wiley, 2000-07-18)
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP-based binders, which are of potential interest for the development of high-performance energetic propellants. The glass transition temperature (T-g) and decomposition temperature (T-d) of pure GAP were found to be -45 and 242 degrees C, respectively. The energy released during decomposition (Delta H-d) was measured as 485 cal/g. The effect of th...
Thermal and dynamic mechanical properties of microwave and heat-cured poly(methyl methacrylate) used as dental base material
Muhtarogullari, IY; Dogan, A; Muhtarogullari, M; Usanmaz, Ali (Wiley, 1999-12-13)
In this study, the particle size distribution, molecular weight, thermal analysis (TGA) differential scanning calorimetry (DSC) and thermogravimetric analysis, and dynamic mechanical analysis (DMA) of poly(methyl methacrylate) used as dental base material were investigated. The commercial raw material used were prepared for microwave curing, and they were cured by microwave and conventional heat methods. The average particle size of the powder studied (103.1 mu m) were much larger than that of the commercia...
LIFETIME PREDICTION OF CARBOXYL-TERMINATED POLYBUTADIENE (CTPB)
BILGIN, F; SAGE, T; ORBEY, N; GUVEN, O (Wiley, 1991-01-05)
Carboxyl‐terminated polybutadiene (CTPB) was subjected to temperature and humidity aging in order to estimate its useful lifetime as a solid propellant binder. CTPB samples were temperature aged from 1 week to 7 months at various temperatures ranging from 50 to 100°C. At various stages of temperature aging, viscosity of the samples were measured, end group analyses were performed, and the samples, after being crosslinked with MAPO, were mechanically tested. As far as mechanical properties are concerned, the...
Conducting polymer composites: Polypyrrole and poly(vinyl chloride vinyl acetate) copolymer
Balci, N; Bayramli, E; Toppare, Levent Kamil (Wiley, 1997-04-25)
Composites of a polypyrrole (PPy) and poly(vinyl chloride-vinyl acetate) copolymer (PVC-PVA) were prepared both chemically and electrochemically. An insulating polymer was retained in the blend and the thermal stability of the polymer was enhanced by polymerizing pyrrole into the host matrix in both cases. The composites prepared electrochemically gave the best results in terms of conductivity and air stability. (C) 1997 John Wiley & Sons, Inc.
Simultaneous novel synthesis of conducting, nonconducting, and crosslinked polymers by microwave initiation
Çelik, Güler (Wiley, 2006-12-15)
A novel synthesis of poly(dibromophenylene oxide) (P), conducting polymer (CP), and/or crosslinked polymer (CLP), and/or radical ion polymers (RIP) was achieved simultaneously from sodium 2,4,6-tribromophenolate by microwave energy in a very short-time interval. The synthesized polymers were characterized via elemental analysis, FTIR, H-1 NMR and C-13 NMR, X-ray diffraction spectroscopy, SEM, DSC, TGA, ESR, GPC, conductivity measurement, and light scattering. It was found that polymerization proceeds throug...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Usanmaz, J. Ates, and A. Dogan, “Thermal and mechanical properties of microwave- and heat-cured poly(methyl methacrylate) used as dental base material,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 251–256, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57798.