Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An ab initio study of 3-aminopropyltrimethoxysilane molecule on Si(111)-(root 3 x root 3) surface
Date
2007-09-15
Author
Demirel, G.
Birlik, G.
Cakmak, M.
Caykara, T.
Ellialtıoğlu, Süleyman Şinasi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
The chemisorption and reaction of 3-aminopropyltrimethoxysilane (APTS) molecule on the Si(111)-(root 3 x root 3) surface are investigated by first principles density-functional calculations within the generalized gradient approximation. Before studying the chemisorption of APTS molecule on the surface, we have firstly put three-OH groups on the silicon surface, but considering six different locations for H and O atoms. Upon their relaxations, model 11, which is assumed to be crosswise for initial orientation of -OH groups, was found to be energetically more favorable than the others. In model 11, after the relaxation, its conformation was transformed to skewed structure due to the repulsive forces between -OH groups. Isolated APTS molecule was also investigated in order to obtain its most stable molecular geometry, for which the HOMO-LUMO gap was found to be 4.41 eV. In addition to these, after the energetically most favorable hydroxylated Si(111) surface was calculated, APTS molecule was chemisorbed on the surface by means of liberating its methoxy groups. In our model for the binding of APTS molecule on the Si(111) surface, the silicon atom in the APTS forms three bonds to hydroxyl groups at the surface.
Subject Keywords
Materials Chemistry
,
Surfaces, Coatings and Films
,
Surfaces and Interfaces
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/56666
Journal
SURFACE SCIENCE
DOI
https://doi.org/10.1016/j.susc.2007.04.045
Collections
Graduate School of Natural and Applied Sciences, Article