Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Unravelling convective heat transfer in the rotated arc mixer
Date
2014-01-01
Author
Speetjens, M.F.M.
Başkan Perçin, Özge
Metcalfe, G.
Clercx, H.J.H.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations. However, though of proven worth, such Nusselt relations offer limited insight into the underlying thermal transport phenomena. This study seeks to address this by considering convective heat transfer from an alternative perspective. To this end, the temperature field is decomposed into a conductive and convective contribution, where the latter incorporates the impact of fluid motion. This representation enables explicit isolation and visualisation of the energy redistribution and energy fluxes induced by the flow and thus facilitates a more direct description and analysis of convective heat transfer compared to conventional methods. The alternative method is demonstrated for the Rotated Arc Mixer, a prototypical industrial mixer/heat-exchanger. This exposes the internal transport phenomena by which the flow enhances heat transfer. Moreover, this reveals that, though having a net beneficial effect on thermal transport, the flow typically also causes episodes of reduced instead of enhanced heat transfer.
Subject Keywords
Convection
,
Numerical simulation
,
Laminar flow
,
Heat transfer visualisation
,
Heat transfer enhancement
URI
https://hdl.handle.net/11511/56967
DOI
https://doi.org/10.1615/ihtc15.hte.009271
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
HEAT TRANSFER ENHANCEMENT IN LAMINAR CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
Özerinç, Sezer; YAZICIOGLU, A. G. (2011-06-03)
In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestim...
Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Heat transfer enhancement in water-feldspar upflows through vertical annuli
Ozbelge, TA; Koker, SH (1996-01-01)
Although there are many industrial applications of liquid-solid flows in technology, the available knowledge of heat transfer to or from such flows is limited. In this study the effects of parameters on the enhancement of heat transfer from water-feldspar slurries flowing turbulently upwards in vertical annuli were investigated and the experimental conditions beneficial to the enhancement of heat transfer were determined. It was found that the heat transfer enhancement in upflow of slurries through a vertic...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. F. M. Speetjens, Ö. Başkan Perçin, G. Metcalfe, and H. J. H. Clercx, “Unravelling convective heat transfer in the rotated arc mixer,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56967.