Traffic Event Related Blog Post Classification by Using Traffic Related Named Entities

Real-time monitoring of traffic flow requires physical sensors to be deployed on road networks. Development of such systems might be impractical due to deployment costs of sensors on large scale networks. This study presents a method to extract traffic event related tweets from social streams in order to employ users of social media as human sensors of traffic conditions or events. The proposed method offers a cost effective way of monitoring events or conditions affecting traffic flow. The method consists of three steps. The first step involves natural language processing tasks for preprocessing the blog posts. The second step extracts a set of traffic event related named entities from blog post texts using the model that is constructed with Conditional Random Fields. The third step includes classification in order to detect blog posts reporting events or conditions affecting traffic flow. The proposed method is experimentally evaluated on a set of tweets collected in one month under varying feature sets. The results show the potential of the approach for traffic monitoring and reveals that the use of traffic related named entities increases the classification accuracy.


Real-time intrusion detection and prevention system for SDN-based IoT networks
Sarıça, Alper Kaan; Angın, Pelin; Department of Computer Engineering (2021-9)
The significant advances in wireless networks with the 5G networks have made possible a variety of new IoT use cases. 5G and beyond networks will significantly rely on network virtualization technologies such as SDN and NFV. The prevalence of IoT and the large attack surface it has created calls for SDN-based intelligent security solutions that achieve real-time, automated intrusion detection and mitigation. In this thesis, we propose a real-time intrusion detection and mitigation system for SDN, which aims...
Explainable Security in SDN-Based IoT Networks
Sarica, Alper Kaan; Angın, Pelin (2020-12-01)
The significant advances in wireless networks in the past decade have made a variety of Internet of Things (IoT) use cases possible, greatly facilitating many operations in our daily lives. IoT is only expected to grow with 5G and beyond networks, which will primarily rely on software-defined networking (SDN) and network functions virtualization for achieving the promised quality of service. The prevalence of IoT and the large attack surface that it has created calls for SDN-based intelligent security solut...
Road Target Search and Tracking with Gimballed Vision Sensor on an Unmanned Aerial Vehicle
Skoglar, Per; Orguner, Umut; Tornqvist, David; Gustafsson, Fredrik (2012-07-01)
This article considers a sensor management problem where a number of road bounded vehicles are monitored by an unmanned aerial vehicle (UAV) with a gimballed vision sensor. The problem is to keep track of all discovered targets and simultaneously search for new targets by controlling the pointing direction of the vision sensor and the motion of the UAV. A planner based on a state-machine is proposed with three different modes; target tracking, known target search, and new target search. A high-level decisio...
GreenSlice: An Energy-Efficient Secure Network Slicing Framework
Akin, Ozan; Gulmez, Umut Can; Sazak, Ozan; Yagmur, Osman Ufuk; Angın, Pelin (2022-02-01)
The fifth generation of telecommunication networks comes with various use cases such as Enhanced Mobile Broadband, Ultra-Reliable and Low Latency Communications and Massive Machine Type Communications. These different types of communications have diverse requirements that need to be satisfied while they utilize the same physical infrastructure. By leveraging Software Defined Network (SDN) and Virtual Network Function (VNF) technologies, the 5G network slicing concept can provide end-to-end logical networks ...
Secure message authentication protocol for can (controller area network).
Mertol, Sarp; Doğanaksoy, Ali; Department of Cryptography (2020)
The widespread communication of vehicles with each other and road infrastructure has raised concerns about how to ensure network security of the electronic control units (ECUs) in the vehicle. The fact that networks such as the Controller Area Network (CAN), which is commonly used in in-vehicle communications, will also be connected to external networks (e.g. 3G / 4G mobile networks) will allow malicious adversaries to benefit from the vulnerability of the CAN. The authentication of messages of ECUs in the ...
Citation Formats
A. Dundar Unsal, H. Tüydeş Yaman, and P. Karagöz, “Traffic Event Related Blog Post Classification by Using Traffic Related Named Entities,” 2019, Accessed: 00, 2020. [Online]. Available: