Forming and fracture limits of sheet metals deforming without a local neck

2018-02-01
Güler, Baran
Efe, Mert
Under certain strain paths (e.g., balanced biaxial) and during some forming processes (e.g., incremental forming, micro forming), sheet metals may deform and fail without forming a local neck. In these cases, it is challenging to determine the forming limits using standard tests and measurement methods (ISO) designed to detect the formability from a sharp, single local neck. In this work, local necking was suppressed in an Al-6061-T6 alloy and a DC-04 steel with an in-plane biaxial (cruciform) test, and the fracture limits of these materials were measured at various strain paths together with the forming limits by an alternative Marciniak-Kuczynski based thickness strain ratio method (TRM). The measured strains were compared with the standard Nakajima tests containing sharp local necks. Due to the unique geometry of the cruciform test, both materials developed strain localizations and deformed until fracture without deviating from the predetermined strain ratio. This enabled a true measure of fracture strains of both materials, which was not possible with the standard tests. Moreover, the ISO method was not applicable to the case without local necking, whereas TRM resulted in similar forming limits in both tests.
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY

Suggestions

Microstructural origins of strain heterogeneity in formability of aluminum alloys
Güler, Bara; Efe, Mert; Department of Metallurgical and Materials Engineering (2019)
In forming of sheet metals, strain localizations and subsequent necking are generally induced by geometrical imperfections, such as local thickness variations. Microstructural heterogeneities also take role in strain localizations, yet their influence is neglected when concerning the macro-scale formability. This thesis investigated the effects of microstructural features on the strain localization behavior of aluminum alloys. A small-scale biaxial test device and sample were utilized for this purpose. The ...
Shear strength of cement-grout borehole plug
Akgün, Haluk (2000-01-01)
The theoretical normal stress and shear strength distributions along the plug-rock interfaces of axially loaded expansive cement-grout borehole plugs cast in rock cylinders, determination of interfacial shear strength parameters, and experimental analyses of plug-rock mechanical interactions are presented as a function of uniform curing and testing temperature and of borehole size. The results of the back analysis show that the angle of internal friction along the plug-rock interface remains almost constant...
Characterization of SAE 52100 bearing steel for finite element simulation of through-hardening process /
Müştak, Ozan; Gür, Cemil Hakan; Şimşir, Caner; Department of Metallurgical and Materials Engineering (2014)
Through hardening is probably the most important heat treatment process for bearings as final geometrical and material characteristics of the final component are mainly determined in this step. Finite element simulation of heat treatment processes is stand out as a qualified solution for prediction of final properties of component due to advantages e.g. cost and time savings, over real-time furnace experiments. Heat treatment simulation needs accurately extracted material property database including thermo-...
Shear and volumetric straining response of Çine sand
Korkusuz, Ahmet Can; Çetin, Kemal Önder; Department of Civil Engineering (2021-1-19)
The response of sandy soils under monotonic loading depends on size, shape and mineralogy of particles, fabric, stress and density states of mixtures. Researchers around the world have studied their local sands and calibrated their responses (e.g., Toyoura sand-Japan, Ottawa sand-Canada, Sacramento sand-US, Sydney sand-Australia, etc.). However, there are not many studies that have focused on regional sands from Turkey. This research study aims to introduce a local sand, Çine sand, to literature as a "stand...
Friction analysis in cold forging
Cora, Ömer Necati; Akkök, Metin; Department of Mechanical Engineering (2004)
Friction is one of the important parameters in metal forming processes since it affects metal flow in the die, forming load, strain distribution, tool and die life, surface quality of the product etc. The range of coefficient of friction in different metal forming applications is not well known and the factors affecting variation are ambiguous. Commercially available FEA packages input the coefficient of friction as constant among the whole process which is not a realistic approach. In this study, utility o...
Citation Formats
B. Güler and M. Efe, “Forming and fracture limits of sheet metals deforming without a local neck,” JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, pp. 477–484, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57113.