Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Large Strain Cruciform Biaxial Testing for FLC Detection
Date
2017-04-28
Author
Güler, Baran
Efe, Mert
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
117
views
0
downloads
Cite This
Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.
Subject Keywords
Forming limit strains
URI
https://hdl.handle.net/11511/57293
DOI
https://doi.org/10.1063/1.5007975
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A layerwise approach to modeling piezolaminated plates
Ertürk, Cevher Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2005)
In this thesis, optimal placement of adhesively bonded piezoelectric patches on laminated plates and the determination of geometry of the bonding area to maximize actuation effect are studied. A new finite element model, in which each layer is considered to be a separate plate, is developed. The adhesive layer is modeled as a distributed spring system. In this way, relative transverse normal and shear motion of the layers are allowed. Effect of delamination on the adhesive layer stresses is also studied and...
Large Strain and Small-Scale Biaxial Testing of Sheet Metals
Seymen, Y.; Güler, Baran; Efe, Mert (2016-11-01)
Small-scale and multi-axial testing of sheet metals, particularly of lightweight alloys and advanced steels are becoming important as these materials exhibit forming behavior sensitive to their unique microstructural features and strain paths. As an alternative to large-scale standard tests, in this paper we introduce a novel biaxial tensile test apparatus utilizing miniature cruciform samples. The compact and portable apparatus includes a custom-built optical microscope and high-resolution digital image co...
The effect of strain rate and temperature on forming limit diagram for DKP-6112 and AZ31 materials
Goksen, Seckin; Darendeliler, Haluk (2020-01-01)
Forming limit diagrams (FLDs) are used in sheet metal operations widely for predicting blank fracture and forming characteristics of materials. There are three approaches for building forming limit diagrams which are the experimental, theoretical and numerical methods. Experimental method, which includes Nakazima formability test, is generally preferred for determining forming limit diagrams, although it requires complex experimental setup and effort. This study, firstly, compares the experimentally determi...
Large strain and small-scale biaxial testing of sheet metals
Seymen, Yadigar; Efe, Mert; Department of Metallurgical and Materials Engineering (2016)
Small-scale and multi-axial testing of sheet metals, particularly of lightweight alloys and advanced high strength steels (AHSS) are becoming important as these materials exhibit forming behavior sensitive to their unique microstructural features and strain paths. As an alternative to large-scale standard tests, in this study, a novel biaxial tensile test apparatus for miniature cruciform samples is introduced. The compact and portable apparatus includes a custom-built optical microscope and high-resolution...
Two dimensional finite volume weighted essentially non-oscillatory euler schemes with different flux algorithms
Aktürk, Ali; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
The purpose of this thesis is to implement Finite Volume Weighted Essentially Non-Oscillatory (FV-WENO) scheme to solution of one and two-dimensional discretised Euler equations with different flux algorithms. The effects of the different fluxes on the solution have been tested and discussed. Beside, the effect of the grid on these fluxes has been investigated. Weighted Essentially Non-Oscillatory (WENO) schemes are high order accurate schemes designed for problems with piecewise smooth solutions that invol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Güler and M. Efe, “Large Strain Cruciform Biaxial Testing for FLC Detection,” 2017, vol. 1896, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57293.