Linking impact-related progeny sizes of cement clinker to modes of single-particle breakage

Download
2016-09-28
Camalan, Mahmut
Hoşten, Çetin
Fragmentation of particulate solids is an important process in many industrial activities, particularly in the mineral, cement and glass industries to comminute the raw materials to a required size. Understanding of processes and mechanisms responsible for fragmentation of particulate solids is a hard task. This may bring great precision for designing and controlling the comminution process. This work aims to contribute to understanding fragmentation of cement clinker particles under impact loading. For this purpose, six narrow-size classes of Portland clinker were fragmented with varying specific impact energy levels in a drop weight test apparatus. Then, breakage probabilities and functions of these size classes were determined from the product size distributions. The calculated breakage functions show evidences for the modes of breakage (meridian cracks to oblique cracks and shattering) given in the literature. Results of this study indicate that self-similarity of progeny size distributions can only be achieved, regardless of particle size and impact energy, if the particles have the same breakage probability, that is the same mode of breakage.

Suggestions

Mapping evaporate minerals by ASTER
Oztan, N. Serkan; Süzen, Mehmet Lütfi (2011-01-01)
Evaporate minerals are important industrial raw materials that have been used in diverse industries for many years. As one of the most extensively used evaporate minerals, gypsum is an important raw material in the construction, agriculture, textile, dentistry and chemical industries, resulting in a massive increase in demand of these minerals in recent years. The aim of this study was to demonstrate the responses of common remote sensing mapping techniques and further develop some of them while evaluating ...
The effects of emulsifier type, phase ratio, and homogenization methods on stability of the double emulsion
YILDIRIM, Merve; Şümnü, Servet Gülüm; Şahin, Serpil (Informa UK Limited, 2017-01-01)
The double emulsion technology has a potential effect on the development of diversity and quality of functional foods by means of decreasing oil or salt concentration, encapsulating and controlling release of valuable components. In this study, it was aimed to formulate stable double emulsions to be used in food systems. W1/O ratios of primary emulsions, stabilized by polyglycerol polyricinoleate (PGPR), were designed as 2:8 and 4:6, and (W1/O)/W2 ratios of the double emulsions were used as 2:8 and 4:6. W/O...
A composite dislocation cell model to describe strain path change effects in BCC metals
Yalçınkaya, Tuncay; Geers, M.G.D. (IOP Publishing, 2009-11-16)
Sheet metal forming processes are within the core of many modern manufacturing technologies, as applied in, e.g., automotive and packaging industries. Initially flat sheet material is forced to transform plastically into a three-dimensional shape through complex loading modes. Deviation from a proportional strain path is associated with hardening or softening of the material due to the induced plastic anisotropy resulting from the prior deformation. The main cause of these transient anisotropic effects at m...
Properties of blended cements with thermally activated kaolin
Arikan, Metin; Sobolev, Konstantin; Ertuen, Tomris; Yeginobali, Asim; Turker, Pelin (Elsevier BV, 2009-01-01)
Kaolin, one of the materials of major importance for the ceramic and paper industry, is also used in the construction industry as a raw material for the production of white cement clinker and, in the form of metakaolin, as an artificial pozzolanic additive for concrete. Metakaolin is a vital component of high-performance and architectural concrete; however, its application in regular concrete is very limited due to relatively high production costs. This report evaluates the performance of a low-cost metakao...
Investigation of the larger scale tungsten production by the electrochemical reduction technique
Özdemir, Furkan; Erdoğan, Metehan; Elmadağlı, Mustafa; Karakaya, İshak (null; 2016-11-01)
Hydrogen reduction of WO3 is the major industrial process in tungsten production. A promising cost and energy efficient method was recently reported [1-3] for direct electrochemical production of tungsten from CaWO4 (scheelite) which is estimated as the two third of the all tungsten reserves of the world. Following the above mentioned patent, several studies verified the production of metallic tungsten by electrochemical reduction of calcium tungstate in the laboratory. This study investigates the applicati...
Citation Formats
M. Camalan and Ç. Hoşten, “Linking impact-related progeny sizes of cement clinker to modes of single-particle breakage,” 2016, vol. 8, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57843.