Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Moment curvatura relationship for R/C sections-with upplications to shear walls.
Date
1985
Author
Akbas, Halit Levent
Metadata
Show full item record
Item Usage Stats
103
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/5858
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Moment-rotation and moment deglection relationship in a pretensioned prestressed concrete beam.
Eke, Şinasi; Department of Civil Engineering (1964)
Near-surface topology and flow structure on a delta wing
Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2004-02-01)
The streamlines, and the corresponding patterns of velocity and vorticity, are characterized on a plane immediately adjacent to the surface of a delta wing using a laser-based technique of high-image-density particle image velocimetry. This technique provides the sequence of instantaneous states, as well as the corresponding time-averaged state, of the near-surface streamline topology and the associated critical points. These topological features are interpreted in terms of patterns of averaged and unsteady...
Cyclic Large Strain and Induced Pore Pressure Models for Saturated Clean Sands
Çetin, Kemal Önder (American Society of Civil Engineers (ASCE), 2012-03-01)
Semiempirical probabilistic models are described to assess cyclic large strain and induced excess pore-water pressure responses of fully saturated clean sands. For this purpose, available cyclic simple shear and triaxial tests were compiled and studied. The resulting r(u) versus gamma, and gamma versus N databases are composed of 101 and 84 cyclic test data, respectively. Key parameters of the proposed r(u) and gamma models are defined as critical shear strain, relative density, effective confining stress, ...
Time-Space Fractional Governing Equations of Unsteady Open Channel Flow
Kavvas, M. L.; Ercan, Ali (2017-02-01)
In this study, the complete governing equations for unsteady open channel flow in fractional time-space are developed from the fractional continuity equation combined with the fractional motion equation, which is based on Newton's second law of motion, by accounting for the acceleration terms in order to render physically interpretable hydraulic terms. Then the kinematic wave and diffusion wave approximations to unsteady open channel flow with physically interpretable terms in fractional time-space are deve...
Energy-based non-local plasticity models for deformation patterning, localization and fracture
Lancioni, Giovanni; Yalçınkaya, Tuncay; Cocks, Alan (The Royal Society, 2015-08-08)
This paper analyses the effect of the form of the plastic energy potential on the (heterogeneous) distribution of the deformation field in a simple setting where the key physical aspects of the phenomenon could easily be extracted. This phenomenon is addressed through two different (rate-dependent and rate-independent) non-local plasticity models, by numerically solving two distinct one-dimensional problems, where the plastic energy potential has different non-convex contributions leading to patterning of t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. L. Akbas, “Moment curvatura relationship for R/C sections-with upplications to shear walls.,” Middle East Technical University, 1985.