Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CHARACTERIZATION OF SPECIFIC HEAT AND MECHANICAL PROPERTIES FOR GRANULAR HEAT STORAGE MATERIALS
Date
2018-12-31
Author
Baker, Derek Keıth
Johnson, Evan Fair
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
293
views
0
downloads
Cite This
The GUNAM-ODAK research group is developing Thermal Energy Storage (TES) technologies for Concentrated Solar Power systems. Focus is on solid-particle (granular) TES materials such as silica sand due to their high melting temperatures and low costs. In the proposed work, the experimental equipment needed to characterize some of the most important properties of TES materials will be constructed, with the goal of characterizing new materials and providing accurate inputs for numerical modeling. Specifically, tests for the specific heat capacity and mechanical properties related to granular flow will be built. Furthermore, experiments will be built to classify the heat transfer in a gravity-fed granular flow between heated parallel plates, and subsequently the geometry will be enhanced to induce mixing and increase heat transfer. With the accurate material property data and validation data from the parallel plate tests, an accurate and trusted numerical model can be achieved in the future, and various TES devices can be modeled, including solar receivers and particle-fluid heat exchangers.
Subject Keywords
Isı ve Madde Transferi
,
Termodinamik
,
Yenilenebilir Enerji Sistemleri
URI
https://hdl.handle.net/11511/59026
Collections
Department of Mechanical Engineering, Project and Design
Suggestions
OpenMETU
Core
Investigation of various options for numerical modeling of fluidized bedsI for a solar thermal application
Bilyaz, Serhat; Tarı, İlker (null; 2015-05-29)
Circulating fluidized bed solid particle absorption solar thermal energy system is a promising approach to solar thermal with thermal energy storage. For accurately modeling such systems, the fluidized bed numerical model should be correctly representing the behavior of the actual bed. There are several suggested partial semi-empirical models in the literature considering distinct phenomena related to fluidization and void fraction distribution in a fluidized be...
NUMERICAL INVESTIGATION OF BUBBLING FLUIDIZED BED TO BE USED AS THERMAL ENERGY STORAGE INTEGRATED TO HIGH-TEMPERATURE CONCENTRATED SOLAR POWER
HİÇDURMAZ, SERDAR; Tarı, İlker (Begell House, 2018-01-01)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analyzed with the help of ANSYS Fluent 17.0. Hydrodynamics of the bubbling fluidized sand bed of 0.28 m × 1 m × 0.025 m dimensions to be used as a direct contact heat exchanger is modeled and validated. Geldart B-type particles with diameter of 275 micrometers and density of 2500 kg/m3 are used in modeling of bubbling fluidized sand bed. A Syamlal−O'Brien drag model with restitution coefficient of 0.99 ...
Investigation of temperature profile in high temperature PEM fuel cell
Çağlayan, Dilara Gülçin; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are promising alternative energy sources for the future. As an advantageous tool in the design of a system, modeling requires less time compared to the experiments as well as its low cost. This study includes both isothermal and non-isothermal three-dimensional mathematical models for a HT-PEMFC having an active area of 25 cm2. Governing equations are solved by using Comsol Multiphysics 5.0 “Batteries & Fuel Cells” module, which is a commer...
Fabrication and characterization of single crystalline silicon solar cells
Es, Fırat; Turan, Raşit; Department of Physics (2010)
The electricity generation using photovoltaic (PV) solar cells is the most viable and promising alternative to the fossil-fuel based technologies which are threatening world’s climate. PV cells directly convert solar energy into electrical power through an absorption process that takes place in a solid state device which is commonly fabricated using semiconductors. These devices can be employed for many years with almost no degradation and maintenance. PV technologies have been diversified in different dire...
Proposal of a Novel Gravity-Fed, Particle-Filled Solar Receiver
JOHNSON, Evan; Baker, Derek Keıth; Tarı, İlker (2016-10-14)
Solar Thermal Electricity power plants utilizing solid particles as heat transfer and storage media have been proposed by several research groups, with studies citing benefits of increased thermal efficiency and lower cost. Several types of solid particle receivers have been proposed, with leading designs consisting of particles falling or suspended in air. A new solid particle receiver is proposed here, consisting of a receiver fully packed with particles flowing downward with gravity. Particle flow rate i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. K. Baker and E. F. Johnson, “CHARACTERIZATION OF SPECIFIC HEAT AND MECHANICAL PROPERTIES FOR GRANULAR HEAT STORAGE MATERIALS,” 2018. Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/59026.