Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
FUNCTIONAL APPLICATION OF IMMUNOLIPOSOMES ENCAPSULATING CELECOXIB ON COLON CANCER CELL LINES
Date
2013-12-31
Author
Keskin, Dilek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
132
views
0
downloads
Cite This
FUNCTIONAL APPLICATION OF IMMUNOLIPOSOMES ENCAPSULATING CELECOXIB ON COLON CANCER CELL LINES
URI
https://hdl.handle.net/11511/60121
Collections
Graduate School of Natural and Applied Sciences, Project and Design
Suggestions
OpenMETU
Core
Synthesis, anticancer activity, toxicity evaluation and molecular docking studies of novel phenylaminopyrimidine-(thio)urea hybrids as potential kinase inhibitors.
Ture, Asli; Kahraman, Deniz Cansen; Atalay, Rengül; Helvacioglu, Sinem; Charehsaz, Mohammad; KÜÇÜKGÜZEL, İLKAY (2019-02-01)
Thirty-two novel urea/thiourea compounds as potential kinase inhibitor were designed, synthesized and evaluated for their cytotoxic activity on breast (MCF7), colon (HCT116) and liver (Huh7) cancer cell lines. Compounds 10, 19 and 30 possessing anticancer activity with IC50 values of 0.9, 0.8 and 1.6 mu M respectively on Huh7 cells were selected for further studies. These hit compounds were tested against liver carcinoma panel. Real time cell electronic sensing assay was used to evaluate the effects of the ...
Superior Photodynamic Therapy of Colon Cancer Cells by Selenophene-BODIPY-Loaded Superparamagnetic Iron Oxide Nanoparticles
Ozvural Sertcelik, Kubra Nur; Karaman, Osman; Almammadov, Toghrul; Günbaş, Emrullah Görkem; Kolemen, Safacan; Yagci Acar, Havva; Onbasli, Kubra (2022-01-01)
© 2022 Wiley-VCH GmbH.Development of targeted nanoparticles as carriers to deliver photosensitizers to cancer cells is highly beneficial for ensuring the expected therapeutic outcome of photodynamic therapy. Herein, polyacrylic acid (PAA) coated superparamagnetic iron oxide nanoparticles (SPIONs), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) were loaded with a BODIPY-based (BOD-Se-I) photosensitizer (Cet-PAA@SPION/BOD-Se-I) to achieve enhanced and selective photodynami...
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
CpG oligodeoxynucleotide- loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells
Pourianazar, Negar Taghavi; Gündüz, Ufuk (2016-03-01)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Computational Approaches to Integrated Modeling of Electrophysiology of the Heart
Paşaoğlu, Özgür; Göktepe, Serdar (2017-09-05)
An accurate understanding of cardiac function necessitates the knowledge of regulation of electromechanical events during a cardiac cycle both on the cellular and organ level. Electrocardiogram (ECG), a recording of the electrical impulses throughout the heart by placing electrodes on specific locations of the body surface, is the most commonly used diagnostic tool measuring the electrical activity of the ventricles and atria through series of waveforms and intervals [1]. ECG is approved to be a key diagnos...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Keskin, “FUNCTIONAL APPLICATION OF IMMUNOLIPOSOMES ENCAPSULATING CELECOXIB ON COLON CANCER CELL LINES,” 2013. Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/60121.