Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution
Date
2011-01-01
Author
Rakap, Murat
Kalu, Egwu Eric
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
Herein we report the preparation, characterization and the catalytic use of the polymer-immobilized palladium catalyst supported on TiO2 (Pd-PVB-TiO2) in the hydrolysis of unstirred ammonia-borane solution. The polymer-immobilized palladium catalyst is stable enough to be isolated as solid materials and characterized by XRD, SM, and EDX. The immobilized palladium catalyst supported on TiO2 is found highly active, isolable, and reusable in the hydrolysis of unstirred ammonia-borane even at low concentrations and temperature. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (E-a = 55.9 kJ/mol) and the effects of catalyst and substrate concentration on the rate for the hydrolysis of unstirred ammonia-borane solution. Maximum H-2 generation rate of similar to 642 mL H-2 min(-1) (g Pd)(-1) and similar to 4367 mL H-2 min(-1) (g Pd)(-1) was measured by the hydrolysis of AB at 25 degrees C and 55 +/- 0.5 degrees C, respectively. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/62718
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2010.10.097
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: A highly active catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2015-09-07)
Rhodium(0) nanoparticles, supported on nanosized hydroxyapatite (Rh(0)/nanoHAP), were prepared by ion exchange of Rh+3 ions with Ca+2 ions of hydroxyapatite, followed by reduction of the resulting Rh+3/nanoHAP precatalyst during the catalytic methanolysis of ammonia borane (AB) in the presence of tetrabutylammonium dihydrogen phosphate (TBAP) at room temperature. Rh(0)/nanoHAP were characterized by a combination of advance analytical techniques including ICP-OES, XRD, TEM, EDX, XPS, ATR-IR and N-2 adsorptio...
Hollow core mesoporous shell carbon supported Pt electrocatalysts with high Pt loading for PEMFCs
Guvenatam, Burcu; Ficicilar, Berker; BAYRAKÇEKEN YURTCAN, Ayşe; Eroğlu, İnci (Elsevier BV, 2012-01-01)
The aim of this study is to synthesize mesoporous carbon supports and prepare their corresponding electrocatalysts with microwave irradiation method and also increasing the Pt loading over the carbon support by using some additional reducing agents. Pt loadings on hollow core mesoporous shell (HCMS) and commercial Vulcan XC72 carbon supports up to 34% and 44%, respectively, were achieved via polyol process with microwave irradiation method. When hydrazine or sodium borohydride was used in addition to ethyle...
Poly(4-styrenesulfonic acid-co-maleic acid) stabilized nickel(0) nanoparticles: Highly active and cost effective catalyst in hydrogen generation from the hydrolysis of hydrazine borane
Sencanli, Selin; Karahan, Senem; Özkar, Saim (Elsevier BV, 2013-11-13)
When hydrazine borane is added to the solution of nickel(II) chloride and poly(4-styrenesulfonic acid-co-maleic acid), PSSMA, both reduction of nickel(II) ions to nickel(0) nanoparticles and hydrogen release from the hydrolysis of hydrazine borane occur concomitantly at room temperature. Using the hydrogen evolution from the hydrolysis of hydrazine borane as reporter reaction provides valuable insights to the formation kinetics of nickel(0) nanoparticles. Nickel(0) nanoparticles are in situ formed from the ...
Photogalvanic effect in aqueous Methylene blue nickel mesh systems: Conversion of light into electricity
Bayer, IS; Eroğlu, İnci; Turker, L (Wiley, 2001-03-10)
The photogalvanic effect in electrochemical cells, employing aqueous Methylene blue and Fe(II)/Fe(III) couple electrolyte and nickel-mesh electrodes, were experimentally investigated. Five different standard H-cell configurations were set-up by modifying the electrolyte. Long-term open-circuit Voltage measurements were conducted in order to test the stability of the cells. Light on-off reproducibility experiments were also carried out during lengthy cell operations. By comparing experimental quantum yield w...
Group 4 oxides supported Rhodium(0) catalysts in hydrolytic dehydrogenation of ammonia borane
Tonbul, Yalcin; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2019-05-01)
Rh3+ ions are first impregnated on Group 4 metal oxides (TiO2, ZrO2, HfO2) in aqueous solution and, then reduced with aqueous solution of NaBH4 to form rhodium(0) nanoparticles (NPs) on the oxide surface. The analyses reveal that Rh(0) NPs are highly dispersed on the surface of TiO2, ZrO2, HfO2. Rh-0/MO2 (M: Ti, Zr, Hf) NPs have high activity and reusability in releasing H-2 from the hydrolysis of ammonia borane with an initial turnover frequency of 643, 198, and 188 min(-1), respectively, at 25.0 +/- 0.1 d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Rakap, E. E. Kalu, and S. Özkar, “Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 1448–1455, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62718.