Thermodynamic quantities for the Klein-Gordon equation with a linear plus inverse-linear potential: Biconfluent Heun functions

Download
2017-02-01
Arda, Altug
TEZCAN, CEVDET
Sever, Ramazan
We study some thermodynamic quantities for the Klein-Gordon equation with a linear plus inverse-linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation. We use a method based on the Euler-MacLaurin formula to analytically compute the thermal functions by considering only the contribution of positive part of the spectrum to the partition function.
PRAMANA-JOURNAL OF PHYSICS

Suggestions

Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Analytical solutions of Schrodinger equation for the diatomic molecular potentials with any angular momentum
Akçay, Hüseyin; Sever, Ramazan (2012-08-01)
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
On solutions of the Schrodinger equation for some molecular potentials: wave function ansatz
IKHDAİR, SAMEER; Sever, Ramazan (2008-09-01)
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrodinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, delta and nu are also given, where eta depends on a linear combination of the angular momentum quantum number l and the spatial dimensions D and delta is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigenso...
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Citation Formats
A. Arda, C. TEZCAN, and R. Sever, “Thermodynamic quantities for the Klein-Gordon equation with a linear plus inverse-linear potential: Biconfluent Heun functions,” PRAMANA-JOURNAL OF PHYSICS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62824.